Roughing It

Now that the wall framing was up, it was time to start installing everything that goes inside the framing. That means electrical and plumbing lines, and in my case, data cables and fire sprinkler piping. In this entry, I’ll briefly address the rough electrical, plumbing, and data lines, as I will have a separate entry on the sprinkler system (because it’s unique and cool).

Rough service work begins with locating where you want to put stuff. For plumbing, that’s usually spelled out in the plans, e.g., where you want the sink, shower, and toilet, so that part is pretty easy, and the relevant dimensions of where the plumbing fixtures connect are standardized. However, there are some nuances that must be considered, and since I’m doing an entirely custom installation, I decided to get all of my fixtures up front. That way (a) I could look at the installation instructions and actually do measurements if I needed to, and (b) the fixtures all matched. It cost  quite a bit up front, but at least that expense is taken care of (!). So, I went ahead and marked where I wanted the toilet, sink, and shower drains and water supplies to go. Now, I had to learn plumbing.

Supplies 1

All fixtures and parts for the bathrooms, plus the toilet and sink for the MBR bathroom.

Supplies 2

The rest of the parts for the bathrooms. I also bought all of the tile at once to make sure I had it from the same run. Lots of stuff to warehouse!

As a chemical engineer and as an engineer on a nuclear sub, I figured I could deal with the technical aspects of a residential plumbing job. I had to review the relevant codes to make sure I was in compliance, but then I figured, how hard can this be? I was about to find out….

I decided to start with the toilet drain because it was the largest pipe and I found out I would have to be doing some tricky routing through the joists, which I had previously tripled to shore up the master bedroom floor structure. These extra thick joists turned out be be troublesome because the pipe had to be angled to get the slope correct and the hole saw that I was using was only slightly larger than the OD of the pipe. I eventually hammered it in but getting that last joint together was a bitch! I hope it doesn’t leak.

Toilet Drain

Toilet drain piping. See the tripled joists surrounding the pipe? I had to drill big holes through those and ram the piping in!

The next challenge was putting together the water supply system for the showers. I decided to ramp up the quality of the showers by installing a “smart” shower system that uses an electronic control in the shower to remotely control the mixing valve. I went with copper pipe because that’s what the house had to begin with, and I sure got some good experience in sweating the pipes together (turns out that it’s not that hard). The best advice that I got was to use MAPP gas instead of propane. The higher temperature of the flame makes the solder flow much better. Nevertheless, It’s a complex setup and I ended up gouging one of the press-fit O-rings when I inserted the pipe into the mixing valve, so it caused a bit of a mess when I turned on the water to pressure test.

Shower Mixing Valves Annotated

Diagram of the remote shower mixing valves. These are located in the garage directly below the bathrooms. The hot and cold water supplies connect to the mixing valves and the remote controller sets the temperature and volume through the controller signal lines. The water then goes directly to the shower head(s).

Remote Shower Control

Remote shower controller. This is all electronic and has a memory for 4 different settings (his/hers/morning/after workout/whatever).


I also found some cool water supply valves that were recessed into the wall and had a very clean look. They are called “stop pull boxes” and are made by a company called “LSP”. If you’re interested, here is their website: LSP Pull Stop Box

And some pictures:

Recessed Water Supply Valve 1

Recessed water supply valve. The valve is the brass fitting in the middle. If you look closely, you can see the ball valve itself (the silver thing in the middle). This is really slick because it’s behind the drywall and the valve is operated by a pushrod attached to the threaded rod on the left-hand side. Looks very clean after installation which I thought was important for a pedestal sink.

Recessed Water Supply 2

Recessed valve installed. The eustachon will cover the hole OK. The brand is “LSP” and the device is called a “pull stop box”.

Going on to rough in the electrical, the plans are important, but I decided I wanted to do some Human Factor Engineering to get the exact location of the switches and lighting fixtures. I imagined myself doing everyday tasks like going to the bathroom, going to the shower, getting dressed, getting ready for bed, etc., and that helped me locate switches so that (a) they would be easy and intuitive to reach for and (b) I could operate the lights from different locations to minimize going back and forth when I wanted to turn something on or off. I also put in extra wall receptacle boxes, especially near where the bed and home office would be. Receptacle and switch boxes are pretty easy to install, so with that done, I was ready to start running wires.

Rough Electrical Bedroom

Example of the customization that one can do if you’re doing this yourself. I added the data and power boxes for the flat screen TV at the last minute (at no cost to the customer).

Running the wires for the rough electrical is something that’s not typically in the plans, which only show the locations of the receptacles, switches, and fixtures. I guess I could have done a schematic diagram, but I figured I would only be doing this once, and as long as I was disciplined in labeling each wire, I would be OK. To run the wires, I did have to plan out where I would be bringing in power from the electrical panel, and then how that power would be distributed throughout the room. The bedroom has two circuits: one for the sink in the bathroom, which needs to be a dedicated GFCI circuit per code, and one for the receptacles and lights. The “current” electrical codes (pardon the pun) require that receptacles in living spaces (bedrooms, living rooms, dens, dining rooms) be AFCI protected, so I needed to take that into account as well. The dedicated GFCI circuit was pretty easy (one wire from the panel to the receptacle), but the other wiring was more involved. The first thing that I did was to bring in power to a receptacle box, and then distribute power to the other receptacle boxes from there. The lighting circuits then tapped off the receptacle boxes.

One thing to keep in mind is the number of wires you have running in and out of each box, and the number of “devices” (switches, receptacles, both of which are referred to as “yolks” in the trade). There is a limit based on the heat load, and there’s a fancy calculation in the NEC, which it turns out, is not trivial. Here is a link to an good explanation. To make things a little easier, I just always get the biggest box possible for the number of devices I want (switches/receptacles) and have not run into any problems.

Electrical Switches and Receptacles

Good example of tailoring the electrical controls beyond the minimum. I can control both lights outside the garage (front and side) and the garage work lights from this location. The front garage door light can also be controlled from the master bedroom and the front door because it is a security and safety feature. I’ve also installed smart switches, where necessary, to allow control automatically under given conditions (e.g., coming home at night, opening the garage door, fire alarm or smoke detector goes off to illuminate egress routes). The receptacles with built-in USB chargers are a must, pretty much in every room.

Routing the wire takes a little planning. The main idea is to drill as few holes as possible, which typically results in running the wires in the ceiling. The other “trick” is to unroll the wire so that it’s flat. If you just pull the wire from the roll, then it will come out twisted and be difficult to staple neatly to the framing. Unrolling it before you pull the wire takes some effort: you have to pick up this heavy roll and heave it ’round several times. But it pays off with a neat and professional installation.

After the wiring was installed, I needed to energize some circuits so we could continue to live normally (if you call living in a house during a remodel “normal” — I guess it’s the “new normal” for us). Despite my supreme confidence in my ability to install some relatively simple electrical work, I flipped on one of the breakers and there was a loud “pop” (“arcing and sparking” in the trade).

Electrical Boo Boo 2

I thought I smelled something funny. Better find out what happened here!

Turns out that I tightened down the cable clamp too tightly and the clamp cut through the insulation and caused a short.

Electrical Boo Boo 1

Forensic analysis showed that I had tightened down the strain relief so much that it cut through the insulation and caused a short. More is not necessarily better!

I felt pretty bad and embarrassed about that, but later, after doing some additional reading in my electrical “how to” books, I found that these sort of things occasionally happen even for the pros. I guess that’s one way to get experience! At any rate, I had to pull the entire cable and replace it because you’re not allowed to splice or patch an electrical cable. All interconnections must be in electrical boxes that have an opening through the drywall to prevent an electrical short from causing a fire behind the drywall.

Lastly is the data cabling. For my project, I’m running a minimum of 2 cat6e ethernet cables and one RG-6 cable per room, but the the master bedroom and home office, I ran quite a few more. I started with standard electrical boxes, but found that low voltage boxes are easier to work with, so from now on, I’m using those. Because these cables are circular in cross section, there’s no need to be too fussy with the unrolling. However, the installation should still be neat. I found some nice cable organizers that allowed me to create nice data cable runs, which was important as the cabling multiplied as I approached the wiring closet.

Data Lines Annotated

Data cables running through the attic. With a minimum of 2 Ethernet and one coax cable per room, that added up pretty quickly. I put a lot of these in the master bedroom because I wanted the cables for a flat screen TV and a home office.

Wiring Closet

Wiring closet replaces the furnace, which was relocated to the attic. All data cabling from the upstairs is run and neatly bundled (on the right). The loose stuff is the cabling from the living room and garage, which needs to be bundled later when I run the rest of the downstairs cabling.

Finally, I had to install draft stops. The inspector pointed this out to me, so that was something I was unaware of, but once I figured it out, it was pretty easy. Basically, wherever you have a penetration through the sole or top plates of your framing, you need to seal the openings. The best way is to use polyurethane foam that comes in a can. You can get a one-use can with an applicator, but I found that hard to control, so I ponied up for a pro applicator, Worked much better, and I figured I’d be using it for other things.

Draft Stop

Draft stop for the data lines coming into the wiring closet. I also had to accommodate the gas line going up to the furnace, which is now in the attic.

So with the rough work done, it was time to put in one of the true infrastructure “upgrades” that I planned for this remodel: a residential fire sprinkler system. Stay tuned…..


How Many Hats Do I Have? — A Short Essay On Project Management

Yesterday, I was picking up some materials at one of my local suppliers (Home Depot). I got there just when the store opened (0600), yet I wasn’t ready to do any “real” work until 0900. What’s up with that?

Actually I was engaged in a lot of activity because I had to rent the truck, wait for the materials to get forklifted to the truck, drive back to the house, unpack, unload, dispose of the packing material, drive the rental truck back, top it off with gas, and then drive back to the house.

Turns out, that whenever you take on a home improvement project of any size, one of the critical tasks is to get your materials. In addition, there are a number of other tasks that need to occur before you commence “real work”. (By “real work” I mean doing the deed. Measuring, cutting, digging, assembling… whatever your concept of “real work” may be.) My Dad always said: “Always have a plan.” For simple tasks, this can be a drawing on the flap of an unused cardboard box. I did this today when I was laying out a manifold for my irrigation system. For more complex tasks, you might need dimensional drawings or a 3D model. Yet, this kind of “plan” is only one-dimensional. Well, really 2-D, but it oversimplifies the task of planning. Planning includes ALL of the tasks necessary to complete a project (of any size). Here is a list of common tasks that are necessary predecessors for “real work” in the context of DIY home improvement:

  1. Define your task. This is the fulcrum around which everything else rotates. Do you want to remodel your kitchen? Do you want to have an accessible bathroom? Do you want to have a water-conserving landscape? Do I want to put in new flooring? (Yes to all.)
  2. Make a drawing. A drawing will force you to detail  critical information. What kind of cabinets do I want for my kitchen? What kind of shower to I need to make my bathroom accessible? What kind of irrigation system do I need to have a water conserving landscape? What kind of flooring do I want? How big? How much? What shapes? As you answer these questions, your design will become increasingly more detailed, and from this, you can not only get an idea of how you’re going to put things together, but also be able to extract a list of materials. This is crucial to the next step.
  3. Source and obtain your materials. I remember before the Internet that I used to spend hours roaming the aisles of the big box stores just seeing what materials were available for my project. Now, I spend hours roaming the Internet. The cool thing is that I now have access to exponentially more choices of materials, and most come with free shipping, so I don’t even have to leave the house. Stuff just shows up. As a matter of practice, I develop my material list in conjunction with the design process, so by the time I have finished the drawings, I also have my shopping list.
  4. Perform a cost estimate and obtain financing. OK, for simple projects, that may mean taking $200 from your savings account. But for bigger projects, like a home remodel, this step is more integrated with the planning process as you will be making trade-offs with your design. Cost estimation is a science unto itself, and there are some good software tools out there when it comes to estimating residential construction projects. I did a detailed cost estimate using an online program called Clear Estimates just before I had my plans approved. Not only did I get a good figure the cost of my remodel, but I also was able to get estimates for the work I plan to contract out. Now I have some benchmark costs so I can better evaluate the bids of the subcontractors.
  5. Set aside time for the project. You want to have a block of free time that allows you to have an uninterrupted workflow to make the job go faster, and minimizes repetitive set-up times. Planning when to work on the project also helps you schedule your material procurements and deliveries. Frequently, deciding on when I’m going to do a project is the first thing that I do because it helps me plan and complete all of the predecessors (task definition, design/drawing, and material procurement). Deadlines are an effective motivator.
  6. GET TO WORK! Finally!

The steps above are the essence of what is called “project management”. It’s actually pretty straightforward if the project is simple, and if the project is larger, you just have to break it down into smaller chunks until what you’re left with are a bunch of simple projects. Here is where it gets interesting. This collection of simple projects, representing a much larger project, is not just a “honey-do” list. These sub-projects are interrelated. Some tasks have to be completed before others can start. Some tasks can be done in parallel. Some tasks require specialized skills which are best left to professional contractors. So, answering the questions of “where to start” and “what’s next” can become quite complicated. Large commercial projects develop what is called an “Integrated Master Schedule” (IMS) which typically uses computer software (e.g., Microsoft Project) to logically link all of the sub-tasks and assign labor and material resources to each task. In theory, you can get an accurate estimate of how much the project will cost and how long it will take. In reality, there are ALWAYS cost overruns and ALWAYS schedule delays, largely due to the facts that (a) there is always a measure of uncertainty in planning any project, (b) the bosses will tend to be overly optimistic because they want to win the bid, and (c) the customer frequently has a change of mind, which results in a change in the plans, and things just cascade from there. I actually have experience with doing this, and I made up an IMS for this home remodeling project about a year ago. That schedule showed that I would complete the project sometime later this year (2015). Alas, the IMS was difficult to keep up to date, and since I’m the only guy working the project, I made a choice to ditch the IMS in favor of doing “real work”. Needless to say, I now only have a vague idea when I’m going to finish, and I’m not quite sure what the final cost is going to be. All I know is that I’ve been stopping by Home Depot almost every day to pick up yet another part that I seemed to have overlooked in planning.

So, as the only person who is working this project, I need to wear many hats. Designer, draftsman, planner, scheduler, estimator, finance manager, procurement specialist (shopper), shipping and transportation (bring the stuff home), warehouse manager (store the stuff), general contractor, and finally tradesperson. I’m sure I left something out, but I think that’s enough to illustrate the point.

Now, when you see a construction crew at work, realize that there is a lot of action behind the scenes that is necessary to support that work. Even if that construction crew is a crew of one.

Here are some pictures of my warehousing operation:



WAREHOUSE  Do you see my ShopSmith?

Do you see my ShopSmith?


Shopping for Parts — What Else Would I Do On Black Friday?

As the last bits of excavation and site preparation come to fruition, the project is now entering the phase where I have to actually start buying materials. When I was making my plans, I did a lot of research on the Internet to make sure I could source the critical parts that I needed, and I did some preliminary estimating. Even though it was quite helpful, things become more serious when you start putting cash on the table. Back in the day, I would spend hours perusing the aisles of the big box stores, writing down prices and in general figuring things out. Now I spend hours on the Internet, copying and pasting prices and in general figuring things out. At least I don’t have to waste time travelling to and from the store. And I can sip a beer without fear of arrest.

All kidding aside, the Internet and stores with an on-line presence are the best thing that has happened to DIY’ers since, well, DIY. Not only can I check inventory and prices, but I can also source difficult to find products and have them shipped to me. For example, I was looking for an irrigation controller that was set up for a smart home, and I found one for sale directly from the manufacturer (Irrigation Caddy). It has an ethernet port, controls 10 zones, and has a rain sensor option. Boo-Yah! In addition, many of these stores have a lot of how-to’s. I completely figured out my outdoor 12v lighting system from a website that sold lighting parts directly from the factory (Landscape Lighting World). They had tons of how-to videos and some very practical advice on landscape lighting. Their products seemed pretty good as well, and when I compared prices, they were reasonable, so I ordered from them.

The big box stores also have significant online presence, and the ones that I use (Home Depot and Lowe’s) have convenient features on their websites that allow you to develop lists. However, sometimes navigation of that all that stuff is tricky. For instance, if you type in a key word on the Home Depot site, you get results that are typically incomplete. The best way to search is to drill down from the home page once you find the department where the product is located. The other hassle is that sometimes you get things that are in the store, which get pulled immediately, and other things which have to be shipped to the store. So I get several e-mails and texts urging me to hurry to pick up my in-store order (and being threatened that they will cancel it) while they haven’t even shipped the balance of the order to the store. I eventually straightened that out, but really, HD should figure out a way to let me know when the complete order is ready for pick-up. Then some items they won’t ship to the store and they’ll charge you to ship it to your home. For example, I wanted to order some drain pipe, and the price was $28, but the shipping was $55. No thanks.

Of course, sometimes they won’t have what you want. Mostly, I try to figure out a way to order it from someplace that has free shipping like Amazon, but in some cases, that’s impractical. So, it’s back to the big box store where you can ask if they can do a special order. My experience with these is pretty positive, because the folks at the special order desk typically have a lot of experience, and they will do thorough research. If they can order the part, you’ll have it in a few days. If they can’t they usually will give you good advice about who may have it.

Lastly, sometimes you really need to see the product in person. Thus far, I’ve been pretty fortunate in that I’ve been looking up the product specifications on line while I was in the planning phase, so I have a very good idea of what I want and how much I need. This works fine for commodities (pipe, wire, fittings), especially if they’re hidden. If they’re not, then you have to start worrying about color and texture, and shape, and … all that stuff that I’m not very good at. So, because my wife has a far superior sense of style, I enlist her help when it comes to these things. She also has a vested interest because she doesn’t want the house to look like I dress. Well, ok,  like I USED to dress before she started picking out clothes for me. Now, I have to busy myself in obtaining “samples” so we can carry them around when we look at materials. These samples go beyond paint samples, although that’s included. We’re talking brick, retaining wall blocks, roofing shingles, … etc.. I hope I don’t need a truck to haul this stuff around! Actually, I exaggerate. All we really need are paint samples and a piece of roof shingle. Be that as it may, my wife is correct about getting all this stuff together to see what it looks like in person. Pictures on the Internet can fool you when it comes to colors because there are so many variables (lighting direction, lighting color, camera settings). Sometimes you can get the data, such as RGB values, for colors, and that can help with computer rendering. But bottom line is that you need to see things in person to make sure. Especially if you’re buying several pallets of bricks for a brick wall. I have a feeling that would be WAY more difficult to return than a pair of bunny slippers.