Building a Paver Patio

One of my  “successful” DIY projects was a paver patio I built when I was living in Chesapeake Virginia. In fact, you can still see the results of my handiwork on Google Earth. The address is 1901 Shady Cove Ct. (if you want to check it out). Building a paver patio is DEFINITELY in the realm of DIY. The question is, do you want it do look like DIY, or do you want it to look professional? I always choose the latter. And I think that all serious DIY’ers aspire to create works that equal the quality of, if not exceed, those that can be professionally built. I guess that strays into the realm of “artisan”, but let’s keep the discussion on the practical side.

We start with the basics. Looking good is one thing. Looking good and lasting a long time is quite another. In my second attempt at building a paver patio, which happened to be at my current address, I took a few shortcuts. While the initial results were nothing short of outstanding (hey, this was the second time I was doing this, right?), over time the patio deteriorated. I didn’t put in a proper aggregate base, and I didn’t seal it, so the ants came in and undermined the sand under the pavers which caused the pavers to sink and the ants to rise up and threaten our very existence. Additionally, the level and slope did not provide proper drainage. I spent a lot of time and effort (and $) fixing the level and drainage problems, as profusely documented in other posts on this blog, but I want to now focus on slope.

It is important to make sure that the ground has at least a 2% slope away from the foundation of the house to allow for proper drainage and water shedding during a heavy rainfall. While we don’t get a lot of rain here in San Diego, when it comes, it comes in gigantic buckets. So my landscape has to be able to handle large rates of rainfall, as infrequent as they might be. A 2% slope is more than adequate, but how, exactly, do you do this?

Making an accurate slope starts with defining a reference point. In the case of a slope away from a house, the reference is, well, the house. Convenient references are typically siding or the weep screed on stucco. Since I have stucco, I’m using the weep screed. Because stucco absorbs water, the top of the finished grade must be at least 4″ below the weep screed. Adding 2″ for the pavers, 1″ for the sand base, and 4″ for the aggregate base means that the ground must be 11″ lower than the weep screed. That’s fine for the level at the foundation, but my drainage grates are 10′ away from the house (120″) meaning that I have to subtract an additional 2-1/2″ to from the 11″ to get the required 2% slope away from the foundation (120″ x 2% = 2.4″). This means that the ground must be 13 -1/2″ lower than the weep screed at the line of my drains.

Now, you have to transfer these measurements to the surface of the soil. You can use a tape measure to transfer the marks from the weep screed, and then use a line level to transfer that mark to the reference you’re using for the slope, and measure down from there. However, that’s not very accurate, and it’s pretty fussy, especially for a DIY’er. A far better method is to get a laser level and a grade stick. It used to be that these setups cost thousands of dollars. But now, you can pick up a good rig for around $375.00. OK, that’s not exactly cheap, and if you’re doing just one job, then maybe renting is a good idea. But if you are doing remodeling as a DIYer working alone, this will come in mighty handy. Plus, isn’t collecting cool tools part of the DIY experience? I can always justify the expense by how much I save in labor costs. But I digress. Here is what you need:

Laser level tools. Make sure you get a grade rod calibrated in fractional inches. Most surveying grade rods are in decimal feet, and that can be a pain to convert, unless you're a professional surveyor, in which case you don't bother converting and leave that to the other trades.

Laser level tools. Make sure you get a grade rod calibrated in fractional inches. Most surveying grade rods are in decimal feet, and that can be a pain to convert, unless you’re a professional surveyor, in which case you don’t bother converting and leave that to the other trades.

Onto the task of transferring these measurements. After a lot of thought, I came up the idea of pounding in grade stakes close to the foundation, and then doing the same where I wanted the low point of the grade to be (near the drainage grates). I would then connect them with strings, and I would have an accurate grid to which I could properly set the grade. The only problem was that if I used the calculated level of the ground, I would have to be fussing with marking and stringing at ground level. Totally a non-starter. What I came up with was to offset the level by 4″. This corresponds to the depth of the aggregate base which I plan on putting in. I would then use a wooden “block” that was 4″ in height to run along the string, which would establish the proper level of the ground with the correct slope.  Here is a video and some pictures.

Now that the building lines are set, I have to remove additional dirt to get to the correct level.

Now that the building lines are set, I have to remove additional dirt to get to the correct level.

Look at these dirt clods. I needed a pick to break them apart!

Look at these dirt clods. I needed a pick to break them apart!

More petrified potatoes. Fortunately, these are very popular as free giveaways on Craigslist. I don't have problems getting rid of these.

More petrified potatoes. Fortunately, these are very popular as free giveaways on Craigslist. I don’t have problems getting rid of these.

This shows how I graded to the lines. I ran my 4" block along the lines and then established the correct grade at the lines.

This shows how I graded to the lines. I ran my 4″ block along the lines and then established the correct grade at the lines.

I then eyeballed the grade and leveled everything out. Pretty nice, eh?

I then eyeballed the grade and leveled everything out. Pretty nice, eh?

Unfortunately while digging (again) I had some trouble locating previously buried services. This is a repair job of my blasting apart my pristine new greywater irrigation system. Fortunately I know how to fix this stuff.

Unfortunately while digging (again) I had some trouble locating previously buried services. This is a repair job of my blasting apart my pristine new greywater irrigation system. Fortunately I know how to fix this stuff.

 

 

Here is the truck used to deliver the 15 yards of aggregate base.

Here is the truck used to deliver the 15 yards of aggregate base.

And here is the aggregate base in all its 15 yards of wonderfulness. This is really going to suck.

And here is the aggregate base in all its 15 yards of wonderfulness. This is really going to suck.

Here is a cool video on how to tighten, and easily loosen, building strings.

Easy Building String Knot

Now that the proper grade is established at the ground level, the next step is to add the aggregate base. The best aggregate base to use, at least in Southern California, is something called “Class 2 Road Base”. This is a mixture of aggregates from 3/4″ gravel down to dust. Plus it had recycled concrete. And it’s cheap(er). Best of all it compacts to a very stable base which is perfectly suited to a paver patio. Because I had the true genius of using a 4″ offset for my building strings, “all” I had to do was to trundle in the aggregate base and make it level with my strings. However, all of my genius could not overcome the basic fact of having to muscle the 15 yards of aggregate that was required to fill my front and back yard to the required 4″. Once the aggregate base is in place, it MUST be compacted. The best way to do this is with a plate vibratory compactor that can be rented. The aggregate base that I’m using compacts really well because of the different aggregate sizes. It really makes a stable, sturdy base on which to lay your pavers. Here are some pictures of the finished product:

This is the fill all compacted. The orange beast in the foreground is the plate compactor. Also notice the wet say in the background. This tool is essential in making nice cuts for your pavers.

This is the fill all compacted. The orange beast in the foreground is the plate compactor. Also notice the wet say in the background. This tool is essential in making nice cuts for your pavers.

Side yard all nice and compacted.

Side yard all nice and compacted.

Front yard all ready for the next step. I'll be filling this with decomposed granite (DG) and will stabilize it with a goop which promises to be resistant to erosion. We'll see...

Front yard all ready for the next step. I’ll be filling this with decomposed granite (DG) and will stabilize it with a goop which promises to be resistant to erosion. We’ll see…

The next thing to do is to lay out the sand on which you’ll be placing the pavers. After doing some research on the Internet, I found a really nifty way to get it perfect. Obtain some 3/4″ PVC pipes, which have an outside diameter of 1″, and lay them down at 4′ intervals. Then dump your sand between the pipes and screed it off with a 2×4. The original video on the Internet showed an 8′ spacing, but they had 2 people working the screed. So I chose to shorten the distance to make it easier for a one-person crew. Working as one person sometimes requires a different approach than what a professional crew would do, so just “doing it like the pros” is not always possible.

One-person screed.

One-person screed.

Everything is now ready for actually laying the pavers. While this can be a big payoff, because it’s so easy as compared to setting the grade and leveling the aggregate base, you have to be careful to set up that all important first course as accurately as you can. Once again, we need some reference points, and the most common one is the foundation of the house. In my case, since the patio occupies the entire back yard, I chose to use the corner of my foundation. The first bricks to lay will be the brick edging, which are bricks that are set perpendicular to the wall. For the corners, I used some 8″x8″ paver blocks, which made the corner transitions easier than cutting up 4″x8″ bricks on the diagonal. More of that to come. Now to set the pattern which you’re going to use for the “field”. Many patterns (basket-weave. running bond, 90º herringbone) should fit right along your edging, and you can merrily brick away. However, I chose to use a 45º herringbone pattern because (a) looks really cool, (b) aligns with the cardinal compass points relative to true north on the property, and (c) is a bit more challenging.

To line up a 45º pattern, the first thing to do is to set up a building line with some masonry string and blocks. This line needs to be parallel to the edge you’ll be working, and should be offset such that the filler bricks are relatively easy to cut and fit. I’ve seen some videos of how to set this up on the Internet, and while watching the process is instructive, these videos miss the obvious when it comes to determining the offset. It’s really quite simple: since the bricks will intersect the edge at a 45º angle, you’ll want to cut off the corner of a brick so you can flip the pieces around and complete the pattern. Here is a diagram:

Diagram of how to set up the first course.

Diagram of how to set up the first course.

A closer look at the diagram shows that the offset is the hypotenuse of a 45º right triangle, whose two legs correspond to the width of your brick. The hypotenuse is the square root of the sum of the squares of the legs (Pythagorean theorem, yes?), So since my bricks are 4″x8″, the offset is √(4² + 4²) = √(16+16) = √32 = 5.65. That works out to 5-5/8″. (If you really want to be nerdly, the closest fraction is 21/32 which is right between 5/8 and 11/16, so you could use your tape measure to get spot on, but in reality, 1/8″ is pretty good.) Why do I discuss this? Because I’m a nerd. And proud of it! That bit of mathematical nuance out of the way, it’s time to lay some brick! Take your bricks and align the corners diagonally with the mason’s line. You want to lay a fair number of bricks to establish a good course to build from, as shown in the picture. I set about 10 pairs (20 bricks).

Now we get to a point where we have to start thinking about the order of things. Specifically, you need to think about how you’re going to set the sand base, then lay the brick, without stepping in the sand base (which defeats the purpose), or disrupting the bricks that you’ve already set. You can (indeed must) walk on the placed brick, but you must step gingerly so as not to disrupt the bricks on the edges. So the brick path you step on needs to be at least 5-6 courses wide. You can start from one edge and build out until it’s wide enough, and then you’re home free.

Stepping Stones. Lay enough brick so you can step on it (carefully) and work your way out.

Stepping Stones. Lay enough brick so you can step on it (carefully) and work your way out.

One of the critical observations in doing masonry work is to realize that masonry is the art of adjustment. Constantly. Bricks are not exactly the same size. Foundations are not exactly straight. So, one has to constantly compromise. In laying this particular herringbone pattern, I noticed that the bricks tended to become misaligned, probably due to the fact that the bricks came in contact with the edging at their corners. This meant that only a slight misalignment in the angle of the bricks will make a big difference. The way to notice this is to look at the gaps between the bricks. If there are excessive gaps, then it is likely that the bricks are misaligned. This is where your rubber hammer becomes your friend. Simply tap the edges of the bricks and they will tend to lock together and self-align. To a point. If you’re not vigilant, then things can get away from you and you might have to pull some of the bricks up so you can align them. Bottom line: constantly pay attention!

It turns out that laying the pavers, as whole bricks, is only half the job. The other half comes when you have to cut the bricks to fit along the edges and any other protuberances, such as post foundations and drainage grates. This is where a diamond blade wet saw comes in handy. Although one can dry cut the bricks with a grinder, the wet saw makes the cuts much more accurately, resulting in a very nice, professional look. The cost of renting this type of saw is totally worth it, especially when compared to the effort you will expend in putting all of the pavers in. The technique is to fit a brick where it would normally go, and then mark where it contacts the edge with a sharpie. Turn the brick over, draw a line between your two marks, and you now have your cut line. I also number the cuts so I can cut in batches to save time, yet keep all of the pieces organized. You’d be surprised how much they all start looking alike! Remember — mark the BOTTOM of the brick. Having a bunch of numbers on the top of your bricks will elicit some uncomfortable questions by your guests after you finish.

Step #1: Line up your bricks.

Step #1: Line up your bricks.

Step #2: Mark where the brick intersects the edge.

Step #2: Mark where the brick intersects the edge.

Step #3: Connect the marks to make a line.

Step #3: Connect the marks to make a line.

Step #4: Number your bricks so you'll remember where they go.

Step #4: Number your bricks so you’ll remember where they go.

Step #5 Cut the bricks. See how handy the numbers are?

Step #5 Cut the bricks. See how handy the numbers are?

Step #6. Set the bricks in place. Looks nice!

Step #6. Set the bricks in place. Looks nice!

Now that the bricks are in place, they should be set into the sand base. This is best done with a plate vibratory compactor. This is a little like a lawn mower, except that it’s heavy and has some weights that rapidly spin, causing the plate on the bottom to buzz in a heavy manner. This is, perhaps, one interpretation of getting “heavily buzzed”. At any rate, the bricks will settle nicely into the sand base and start to lock up with each other, stabilizing the entire assembly. That’s all good, but in order to completely stabilize the structure, you must add sand. These pavers are specifically designed to have small (1/8″) gaps between them — in fact, there are little tabs on the sides of the brick to optimize this spacing and keep it uniform throughout. Because the gap is small, and the friction of the sand is what is used to lock the pavers in place, it is important to use “joint sand”, which has the right grain size and sharp edges. The process is to spread the sand all around, sweeping it back and forth a bit to get it to go into the gaps, and then take the plate compactor and run it over the bricks again. This will shake the bricks and the sand will rapidly and completely fill the gaps. (Heavily buzzed with “joint” sand — hmmm…. maybe that’s what makes them act like bricks.) You’ll want to sweep and vibrate one more time to make sure the gaps are filled all the way to the top. You will likely now have some excess sand on top, so it will need to be swept off. I used the extra sand to make a sandbox for our outdoor cat, Tiger.

Here is our outdoor cat, Tiger, in the supervisory mode. He is a feral cat that we tamed, and he comes in to eat and when the weather is bad, but we could never litter train him. So....

Here is our outdoor cat, Tiger, in the supervisory mode. He is a feral cat that we tamed, and he comes in to eat and when the weather is bad, but we could never litter train him. So….

Tiger's Toidy. A pristine sandbox in a secluded, private location. It pays to be a cat!

Tiger’s Toidy. A pristine sandbox in a secluded, private location. It pays to be a cat!

 

Finally, the last step: sealer. Sealer is important because (a) it penetrates the sand, discouraging ants and other bugs from coming up through the gaps between the bricks, and (b) penetrates the surface of the bricks to make the cleanup of spills, including such things as grease from your grill and bird poop, much easier. Putting on the sealer was not particularly difficult, but it was important to flood the bricks, and especially the gaps, to get good penetration. I used a roller attached to a pole and it worked pretty well.

This particular job took a lot of time, particularly in some unseasonable heat, but I took some vitamins and had a few extra cups of coffee, so the following video outlines the process from start to finish.

As a bonus, I now have completely cleared my driveway which, for the past 18 months, has served as a lay down area, particularly for the bricks and sand I harvested from the original patio. I finally feel as though my outside projects are near conclusion. Here are some more pictures:

Driveway with all the junk and lay-down for the patio. I removed the patio bricks 18 months before and they've been sitting there until now when I could reinstall them.

Driveway with all the junk and lay-down for the patio. I removed the patio bricks 18 months before and they’ve been sitting there until now when I could reinstall them.

After 18 months, the driveway is clear and I can now park my cars! Unfortunately, this is a temporary situation as I will be starting on the inside of the house and will need this space for another lay-down area. :(

After 18 months, the driveway is clear and I can now park my cars! Unfortunately, this is a temporary situation as I will be starting on the inside of the house and will need this space for another lay-down area. 😦

So, the next few steps will be to finish off the outside, and that begins with a terrific outdoor space called a “catio”. More to follow….

Removing Recalcitrant Concrete Forms — How to Adapt and Change Your Approach

This week was a bit of an interlude. I had just finished one project (the new patio cover/trellis supports and footings), but I really wasn’t ready for the next one (building the backyard retaining wall). Nonetheless, there was a lot of work to do. I had to determine exactly where the backyard retaining wall would go based on how much dirt I had to accommodate from the net result of my adventures in grading (see previous posts). So, early in the morning, I went out with my AWESOME laser level and grade rod and determined the level of my retaining wall, and then went back to my computer model to set the dimensions of the retaining wall based on the volume of dirt I had to re-distribute. I then calculated the number of retaining wall bricks and capstone that I would need.

I also had to demo the old footings with a jackhammer. It cost $75 for 4 hours — if I would have done this earlier, when I had the jackhammer for other reasons, I would have saved the $75.  That is (part of) the price of not thinking ahead. Oh well. I also had to sort through a bunch of other demolition products, primarily lumber, so Habitat for Humanity could pick it up. To meet their requirements, I had to disassemble all of my structures (e.g., concrete forms), and also had to rid some of my other used lumber from nails and screws. I don’t want to pay somebody to take this lumber to a landfill where it will rot and pollute our environment, instead of being repurposed for someone else’s needs. My lovely wife is the great conservator and recycler, and I always follow her recommendations. Over the years, I have come to truly appreciate her wisdom and forward-thinking about our care for our environment. It makes a difference on many levels.

A big pile of busted up footings. Will I ever get rid of this stuff?

A big pile of busted up footings. Will I ever get rid of this stuff?

All the lumber I used for my concrete and footing work, ready to be repurposed by Habitat for Humanity.

All the lumber I used for my concrete and footing work, ready to be repurposed by Habitat for Humanity.

Part of my demolition activity was to remove the forms from the concrete pour. In particular, I had to remove the forms which made a recess in the concrete to fit in my footlights. These were all left in place when the outside forms were removed because it was important to have the concrete cure and gain maximum strength because removal of these forms places a stress on the surrounding concrete. Thanks to my naiveté,  I did not seriously consider the potential difficulty in removing these little forms. After all, they were just little plywood boxes held together with a few finish nails. And the concrete contractor did a good job of spraying release agent (diesel fuel — you can smell it when you pull the forms), so I figured no big deal. I’ll just yank these bad boys out by inserting a few screws and pulling with pliers.

This approach did not work out well.

Turns out that the fresh concrete has water (duh!) which gets absorbed in the wood, no matter the release agent. This causes the wood to expand, and, unless you live in a desert (I do) and are willing to wait for several months to let ALL the moisture evaporate (forget that — I have a schedule to keep and I’m impatient), then you will have to remove the forms using brute force. This was an “inside” form, meaning that when it expanded, it only forced itself tighter against the surrounding concrete. I tried a couple of methods which involved a somewhat clever use of jackscrews that would push out the form from behind, but all ended up in failure. If I would have foreseen this complication, I could have installed the correct hardware before the pour, but I didn’t, so I was stuck. In the end, the brute force method was the way to go.

Brute force means removal by destruction. Basically, you use an array of tools, (hammer, crowbar, hand-held jigsaw, drill, chisel) to cut up the form and lever it out. Without doing damage to the concrete, of course. I would cut the top and bottom of the plywood with a jigsaw and then crowbar the top and sides out. For the back, I would drill a horizontal and vertical line of holes, and then use a chisel to break the plywood along the drill lines. The remaining pieces could then be pried out. So was this DIY hell, or was it what the pros do?

In a word, yes to both.

I had a basic misconception with how difficult the form would be to remove based on overlooking the expansion of the wood due to moisture in the concrete. My initial attempts did not take this into account. After trying the alternative jackscrew approach (the screws would either strip or shear off), I found that the brute force demolition approach was not so bad. This is what I think pros do in this situation. So I eventually came up with a “pro” approach. It just took me a few iterations. And a lot of time. Which is why pros are always faster. But I had “fun” doing it, right? Truthfully, no, but I learned something, and that is one of the benefits, if not a joy, of being a DIY.

Here are some pictures and a video:

Here is an "after" picture. Note how the edges of the well are a bit rough. I'm going to have to figure out how to hide this. Hiding your mistakes is an essential part of being a good DIY'er. Hey -- even the pros do it!

Here is an “after” picture. Note how the edges of the well are a bit rough. I’m going to have to figure out how to hide this. Hiding your mistakes is an essential part of being a good DIY’er. Hey — even the pros do it!

The detritus from the destructive removal of the concrete forms. That entire project turned out to be a "well spent" afternoon (!)

The detritus from the destructive removal of the concrete forms. That entire project turned out to be a “well spent” afternoon (!)

 

I’m trying to get a little more traffic on my blog and I ended up getting a domain name: http://www.diydivo.com.  It’s easier to remember, so please visit often!

 

Getting Ready For A Concrete Pour

Things are beginning to shape up in front, and one of the final “projects” was going to be to pour the concrete. This is DEFINITELY a job for a professional crew — NOT DIY! I know this from harsh, personal experience. Oh, I know, the videos make it seem really easy, but trust me, striking off a mound of concrete with a screed is hard, messy work, and is actually quite comical if it’s just you and your wife doing it. OK, I’ve done a couple of small sidewalks, but this job is way too large and intricate to trust to anybody but a professional crew. Hey, at least give me credit for knowing the difference!

Be that as it may, I had my plans, so I know what I wanted to do. Well, at least I thought that I did at the beginning. More on that later. The fact is that a dedicated DIY’er can do essentially all of the prep work. This is quite a lot of work, it turns out, and while you may get some benefit of saving some money, the biggest advantage for me was giving the concrete subcontractor a lot of flexibility with the schedule. If you have a pro do the whole job (demolition, site and grade prep, base fill, building the concrete forms, and setting out the remesh), then you’ll have to wait several weeks until the schedule is clear for a multi-day (or week) job. If you do all of the work, it’s a 1 day job of pouring and finishing the concrete, which can be scheduled more easily. Now for all of that prep work.

Demolition was done previously, per several of my previous posts. And, although I did a reasonable job of getting the grade set correctly with the steer skid, I still had a fair amount of cleanup to do. The skid steer doesn’t get into the corners, plus I had to get some stumps ground after I had completed the initial excavation. Plus the rains over the winter (such as they were) ended up “displacing” some dirt which had to be “re-placed”. In other words moved around some more. I ended up barrowing out about 4-5 yards of dirt to the back.

Will I EVER get rid of this dirt?

Will I EVER get rid of this dirt?

 

 

 

 

 

 

 

The next thing to do was to set up a base. I had a choice between 3/4″ gravel and “class II  road base”. I decided to use gravel because I though it might be better, but it turns out that class II road base is what is typically used around here because gravel is used for areas where frost heave is a problem, and you want something to absorb the resulting ground motion. Road base is less expensive (!), and since it compacts way better, I plan on using it as the base for my brick-on-sand patio. So I find this out too late and I now have 7 yards of gravel to chuck  and spread around. C’est la vie! Fortunately this went reasonably quickly. The only hiccup was that I had to somehow figure out a way to get wheelbarrows of this stuff to the back while navigating around previously installed drainage pipes that were annoyingly protruding from the ground. My solution was to barrow a pile of gravel around the drains and then take some plywood and make little ramps so that I could gingerly push a wheelbarrow with several hundred pounds of gravel through the maze that eventually lead to the back yard. After all was distributed, I rented a plate compactor to give a good solid base.  Because the compactor wouldn’t fit into the corners, or around some of the obstacles sticking up, I had to use a hand compactor to get everything nice and tight.

That there is a cubic butt ton of gravel to move!

That there is a cubic butt ton of gravel to move!

Chucking gravel from front to back. Note the plywood highway.

Chucking gravel from front to back. Note the plywood highway.

 

 

 

 

 

 

 

I used a pile of gravel and some plywood ramps to navigate around the drain grates that were sticking up. I ended up raking the gravel level as i worked my way back, so it ended up all good.

I used a pile of gravel and some plywood ramps to navigate around the drain grates that were sticking up. I ended up raking the gravel level as i worked my way back, so it ended up all good.

 

 

Front entrance gravel all level and compact. Ready for the forms.

Front entrance gravel all level and compact. Ready for the forms.

 

 

 

 

 

 

 

 

While I was gearing up to move all of this gravel, I also had to buy lumber for the forms. So, I woke up early on a Saturday and headed over to the local Home Depot. Alas, it was raining, so it promised to be a mucky day outside. As I drove into the parking lot, I saw that the rental truck was conveniently parked, so I assumed it was available. I loaded up a bunch of lumber (plywood, 2x4s.), paid for it, and tried to rent the truck. I was then told it was out of commission for some obscure reason. Since my mood sufficiently sour to begin with, I vented my frustration. The customer service people were very nice, let me have my say, then proceeded to help me out with a free delivery. How good is that? So, shame on me for being a dickhead, but good for the Home Depot folks. I sent their boss a nice e-mail apologizing for my brief outburst and profusely thanking them for their excellent customer service. At any rate, I come back to the house and discover that my brand new wheelbarrow has a flat tire that will not succumb to mere inflation. So it’s back to Home Depot to get a flat-free tire. I guess it just was going to be one of those days….

 

My new wheelbarrow with a flat tire. Come on!

My new wheelbarrow with a flat tire. Come on!

 

 

 

 

 

 

 

Next was the forms. With my previous experiences with concrete, getting the forms right was always a challenge. So this time, I wanted to make them very sturdy and straight. I used 1/2″ plywood and made a frame of 2x4s to support the plywood so there would be no bending. The 2×4 frames also gave me something solid to work with so when I drove the stakes, I would be using the forms as the guide. The contractors who came out to bid basically said that this was overkill, and they may have been right. But as a DIY guy working alone, I think this gave me the best result and minimized the amount of fussing around to get the forms aligned and in place.

Frame for the form. I had to eventually rebuild this one because it was too large, but you get the idea.

Frame for the form. I had to eventually rebuild this one because it was too large, but you get the idea.

Detail of my forms. The corners are bolted together with braces that pull everything tight and square, and make disassembly very easy. Too bad I won't be using these again.

Detail of my forms. The corners are bolted together with braces that pull everything tight and square, and make disassembly very easy. Too bad I won’t be using these again.

 

 

 

 

 

 

 

 

 

 

Bottom of plywood on form extends down to allow for concrete to flow between levels to allow a monolithic slab without a lot of fuss in removing the form to finish the faces.

Bottom of plywood on form extends down to allow for concrete to flow between levels to allow a monolithic slab without a lot of fuss in removing the form to finish the faces.

 

 

 

 

 

 

 

 

One of the nuances of my design was that I wanted to place can lights within the concrete to provide lighting for the steps (as a safety feature). Although the lights that I chose were rated for casting in concrete, in the long run, that is a bad idea because when (not if) they fail, you’ll have to tear out the concrete to get to them. No thanks. So, my plan was to construct plywood molds that would result in a perfectly sized recess that I could fit the lights into. Additionally, the molds had a hole that accepted PVC conduit, so that I could run the wiring between the boxes and back out through the wires that I had cleverly routed around the house while I was digging the drainage lines to supply the power. This is 12v lighting, so no problem with running the wires adjacent to where water might be. However, on the back porch, the lights needed to be located near the top of the slab. This could be problematic with cracking, so I added a 1×1 wire mesh reinforcement with material I had left over from a previous project. I also knocked down the sharp edges of the plywood boxes to minimize stress concentrations. My hope is that, with these little details, plus the fact that I am going to tile over these fragile areas, will make everything all right.

After I had set up the forms, I and my wife had a good chance to look at what the final result might be and, you guessed it, we were having some reservations. So, we took a step back, and perhaps some steps around, and started to actually walk through the expected traffic patterns. After a few iterations, it became obvious that we had to change things around a little in the front, and that is one of the advantages of DIY. You really can change things at almost the last-minute without a great impact on cost or schedule. Had this been an agreed upon design and had I already had a contractor doing the work, changing this stuff would have been out of the question. Of course, perhaps my design was not so good to begin with, and maybe a pro would have come up with the right answer in the first place, but what fun is that? I also had to re-design (and re-build) the forms to have the proper height above the finished concrete surface and provide a gap underneath so that the pour could be continuous, resulting in a monolithic slab. Good thing I had ordered some extra lumber!

The front landing is disjointed and not ergonomic. It looked better in the model and plans.

The front landing is disjointed and not ergonomic. It looked better in the model and plans.

Just doesn't look right.

Just doesn’t look right.

 

 

 

 

 

 

 

That's more like it! Nicely balanced and allows access up the ramp (on the right), from the driveway apron (on the left), and from the garage.

That’s more like it! Nicely balanced and allows access up the ramp (on the right), from the driveway apron (on the left), and from the garage.

 

 

 

 

 

 

 

 

While I was doing all of this, it was time to get some bids for the work. I had a number of folks come by, and each was very helpful and offered some advice as I was finishing up. One comment was pretty much universal: “Fill in the areas where you have deep concrete (e.g. the back porch and front landing) with materials that are less expensive than concrete. Well, it turns out that I had a big pile of masonry detritus  accumulated from my previous work, so it was a no-brainer to chuck that stuff into these areas, if not to save money, than to just get rid of the stuff in a manner that did not involve surreptitiously dumping this crap into the residential waste stream over a long period of time. Which is my normal modus operandi. I learned this from my wife.

Finally, the re-mesh. This is a welded wire mesh that is used to provide reinforcement in the concrete. It is made of large gauge (#6) steel wires that are spot welded together to form a  6″x6” mesh. You can buy these in flat sheets of 5’x8′, but that is much more expensive than buying a 150′ roll and cutting it yourself. Of course, I did the latter. I had previously purchased a heavy-duty wire cutter (essential for this work) and set about unrolling the beast and nipping off sections so that they fit where I needed to put them. I ended up with a number of relatively small pieces because (a) they were easier to make flat — the roll has some “memory” so you have to bend it a little to make it lie flat — and (b) they were easier to handle and place where I needed them.

Back porch ready for the pour. Can you see the masonry detritus poking through the gravel? Also a good look at the forms and reinforcement for the can lights.

Back porch ready for the pour. Can you see the masonry detritus poking through the gravel? Also a good look at the forms and reinforcement for the can lights.

Left driveway apron all ready for the pour.

Left driveway apron all ready for the pour.

 

 

 

 

 

 

 

 

 

 

PVC electrical conduit is supported by rebar stakes so that it won't bend when the concrete is poured over it.

PVC electrical conduit is supported by rebar stakes so that it won’t bend when the concrete is poured over it.

Service sidewalk all ready. I'm replacing the square grates with round ones on the advice of the subcontractor to minimize cracking.

Service sidewalk all ready. I’m replacing the square grates with round ones on the advice of the subcontractor to minimize cracking.

 

 

 

 

 

 

 

 

 

 

Now everything was all set and the bids were in. It was time to choose a subcontractor. I chose a person who (a) provided a reasonable price (part of my day job is cost estimation, so I knew what the price range should be), and (b) would provide a schedule (e.g., meeting time, estimates), and stick to it. I believe the latter is a key indicator of future performance.

I’m meeting with the subcontractor tomorrow, and with luck, I’ll have the concrete poured by the end of the week. Wish me luck!

“Little Projects” — Another Part Of A Home Remodel

Thus far, most of my posts have been focused on progressing the home remodeling project as a whole. However, as with any thorough home remodeling, there will be a few things that will be seeming unrelated to the main project, and these stem from the inspections that occurred in leading up to the start of the overall project.

In this example, I had a plumber come in and inspect my domestic water drain lines (not to be confused with site drainage for runoff). I actually did this quite a few months ago because I wanted to know if I had any major work lurking in the background and would have to perform additional digging to fix my drain lines. The good news was that my drain lines were in excellent shape. No clogs, build-up, roots, or other “growies”. In fact, I did not need a drain cleaning! However, there was one part of the drain, right below the kitchen sink, that had a crack and was leaking. My plumbing contractor (Eastlake Plumbing)came in and did an AWESOME job fixing the drain. In fact, they re-routed some of the drain in order to fix a problem that the original builder left behind. However, I had to cut a hole in the stucco on the outside wall near the drain in order to give my plumbing heroes the correct access. That left a big hole in the side of my house. I wasn’t sure exactly how to fix it, but I had bought some cheap plywood and some goop with the hope that I could just seal it up and have it done properly when I hired a stucco crew to stucco the addition and “fix” some other problems.

I had deferred this project because I wanted to keep my momentum going with the brick wall and front yard. That turned out to be a good move because, lo and behold, my favorite YouTube stucco guy Kirk and Jason Girodanos posted a video on how to do a stucco repair after a plumbing job. He gave me some key pointers, but more importantly, showed the job from start to finish so that I had a really good example from which to proceed. I bought my materials, and then finally, this past weekend, had a chance to actually start on this project.

The first thing to do is to chip away the stucco from the perimeter of the cut so that you can slide some building paper underneath. Unfortunately, as I broke away stucco and exposed the underlying structure, I found that it had been adversely affected by the water which was constantly leaking out of the drain. Plus, for whatever reason, the original stucco only had one layer of building paper underneath, instead of the required two layers. So I had to remove a lot more stucco than I planned on in order to expose solid material from which to work with.

The other problem was that there were several studs, plus some of the sole plate and the weep screed, which were totally rotted out. Thus, I had to deal with the structural issues first, before I could move forward with the stucco repair. At least my carpentry skills are fairly well-developed, so I was able to cut away the offending materials, and rebuild the ends of the studs by wedging in “cripple” studs at different lengths to form what looks like a finger joint. This gave me some resistance to shear forces, in addition to the gravity forces which were taken by a new sill plate that I attached to the foundation using a “gunpowder” hammer. I also had to cut notches in the new studs to accommodate electrical wiring and then secure them with nail plates.

Demolition is complete Note how the rotten sole plate and studs are removed, and that I cut the studs to make interlocking "fingers" that will provide lateral strength.

Demolition is complete Note how the rotten sole plate and studs are removed, and that I cut the studs to make interlocking “fingers” that will provide lateral strength.

Rotted out studs. Like swiss cheese!

Rotted out studs. Like swiss cheese!

 

 

 

 

 

 

 

 

 

 

New sole plate installed. This is a "powder activated" hammer, meaning that it uses a .22 caliber shell to power a hammer. The nail has an orange centering bushing that holds the nail in the "muzzle" of the hammer. You whap the end of the tool with your regular hammer, and that fires the shell and drives the nail right into the concrete. I bought this years ago for attaching furring to a concrete wall, and I've used it countless times since. A must-have if you want to attach something to concrete.

New sole plate installed. This is a “powder activated” hammer, meaning that it uses a .22 caliber shell to power a hammer. The nail has an orange centering bushing that holds the nail in the “muzzle” of the hammer. You whap the end of the tool with your regular hammer, and that fires the shell and drives the nail right into the concrete. I bought this years ago for attaching furring to a concrete wall, and I’ve used it countless times since. A must-have if you want to attach something to concrete.

Replacement studs, interlocked, nailed, and notched for the electrical wires.

Replacement studs, interlocked, nailed, and notched for the electrical wires.

Nail plates over the wires. Required by code, but also did a good job of keeping the wires in place. Note that I'm fitting the building paper.

Nail plates over the wires. Required by code, but also did a good job of keeping the wires in place. Note that I’m fitting the building paper.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The next step was to shove 2 layers of building paper underneath the original building paper at the top edge of the cutout. I thought this would be a major problem, but it turned out to not be so bad. For me, the key was cutting everything the right size and breaking it down into a few separate sheets to make it easier to handle and position.

From there, I had to staple on some lath. I got this lath at a discount because it was folded over and wasn’t a continuous sheet, but for my purposes it was OK. Again, cutting and fitting took several iterations, and I used a number of individual pieces to make things easier to work with. And a lot of staples.

Building paper in position.

Building paper in position.

Lath installed. Ready for stucco!

Lath installed. Ready for stucco!

 

 

 

 

 

 

 

Finally, time to put on the actual stucco. I bought a couple of boxes of “stucco patch” which has only a 20 minute working time, so ya gotta work fast! I used my “eggbeater” mixer and a 5 gallon plastic bucket to mix the stucco and then went to work. Kirk and Jason Girodanos  use what is called a “pool trowel” and that worked like a champ! So, I got everything on, but I ran out of stucco mix, so I have a big concave area in the wall where the patch is. NBD because (a) the patch is fully functional (waterproof and no holes), and (b) I’m going to have a crew come in and stucco the addition, so I can have them go around the house and fix all of my other stucco problems. Honestly, I don’t know how to apply the finish, and I have other demands on my time. Again, this is an example of making smart decisions about what you do yourself, and what you contract the pros to do. When it comes to portland cement products, I will typically defer to a pro who has a crew that can get the job done before everything turns into an unworkable and ugly slag heap. I speak here from experience.

Stucco in place. Looks like crap, but it's functional and it's concave so the pros can cover it up and make it look nice. I'm calling this the "brown" coat for obvious reasons.

Stucco in place. Looks like crap, but it’s functional and it’s concave so the pros can cover it up and make it look nice. I’m calling this the “brown” coat for obvious reasons.

 

 

 

 

 

 

 

 

Next up: the big Concrete Pour!

How To Build a Keystone Retaining Wall

Today, I finished the majority of the hardscape of my front yard (if you don’t count the concrete for the walkways and driveway aprons). This is, in a sense, a milestone because, from now on, I will no longer be moving around dirt, but actually putting it in its final resting place. Plus, it’s pretty cool to see the design manifest in physical reality. A lot of the hardscape is done with Keystone blocks for the retaining walls, and because I ran into some challenges during the installation and came up with some solutions, I wanted to share those with you; hence the subject for today’s blog entry.

First, a disclaimer: The instructions that I’m providing are the way that I came up with. They are by no means the ONLY right way to accomplish this task and, indeed, deviate from some of the recommendations on the manufacturer’s and distributor’s websites. I will provide my reasoning for these deviations as I go. Having said that (whew!), let’s get started!

Keystone retaining walls are a wonderful example of smart design and engineering. The company has figured out how to put together walls with specialty engineered Concrete Masonry Units (CMU’s) that do not require mortar. Just like Lego. Fit them together, and voila! A sturdy, attractive, easy to build wall. Perfect for the DIY’er. In fact, the videos that the company puts out makes it seem like putting up a retaining wall is a breeze. And at some points during the construction, it is. But don’t let the sales videos fool you. Putting up a retaining wall, as with any other permanent structure, requires attention to detail, and a lot of scut work, as I will detail later in this blog entry. Still, for a DIY’er, it’s a great solution.

Keystone has many different wall systems to choose from. I had previously installed a Keystone “Garden Wall” during a previous remodel where I replaced old rotten wood with a “real” retaining wall. Wood is not a good material to use as a retaining wall because it, eventually, will decompose. Masonry doesn’t decompose, so that’s the long-term solution. So, a “Garden Wall” was the system I decided to use going forward, mainly because I wanted to make use of what I already had. I ordered the materials (more Keystone Garden Wall blocks) from a local manufacturer (RCP Block and Brick) whom, I assume, has a franchise agreement to produce these CMU’s locally to Keystone’s standards. Now the tricky part.

The Keystone website has an installation page that shows an idealized portrayal of an attractive couple putting up a retaining wall. And the website has some very essential information on how to properly complete the installation. But nevermind the hype, or how “easy” they make it seem. Did you ever watch a cooking show where the chef makes it look easy and throws everything together in a matter of minutes, and you have a perfectly cooked, delectable meal? Well, forget it. They didn’t show the toil and tribulation of the underpaid and underappreciated proletariat doing all of the prep work. THAT agonizing, laborious PREP WORK is what you, as a DIY, will have to do. Forget the good looks and focus on the hard work ahead, but with a vision that your creation will be as remarkably beautiful, as it is pleasurable to work on.

To begin with, you need a design from which to do the layout work, and from which to estimate materials. I discuss the design process in some of my other blog posts, so I won’t go into detail here, except to refer you to the design that I’m working from.

LANDSCAPE PLOT PLAN

LANDSCAPE PLOT PLAN

 

 

 

 

 

 

The first task is the layout, where you transfer the dimensions in your plan to the dirt. The most important aspect of the layout is to choose the reference points from which you will measure. For this example, I’m laying out the center planter, so I wanted to make sure that the planter was centered between the two sides, and at a specified distance from the outside retaining wall to allow for a comfortable pathway. If you’re doing the layout on a relatively flat surface with no obstructions, then a measuring tape will usually do. For this layout, I couldn’t lay a measuring tape flat, so I strung a mason’s line and used a plumb bob to measure down vertically. This turns out to have a second advantage, which is that you need to measure vertically to establish the height of the base course. I used little flags and marking paint to mark the layout on the dirt.

 

Layout of the center planter. Notice the string that I used to set the height.

Layout of the center planter. Notice the string that I used to set the height.

Another view of the layout.

Another view of the layout.

 

 

 

 

 

 

 

Just for fun, I decided to check the level of the string, which would tell me if the outer retaining walls that I just built were good. Look at that! Dead on, which validated my process for laying out the base course.

Just for fun, I decided to check the level of the string, which would tell me if the outer retaining walls that I just built were good. Look at that! Dead on, which validated my process for laying out the base course.

 

 

 

 

 

 

 

 

It is vitally IMPORTANT to make SURE you have a level base and that your first course is aligned properly. The nice-looking couple portrayed on the Keystone installation page make you think this is relatively easy. From my personal experience, I will tell you that this process is difficult, time-consuming, and frustrating. And you must be able to stomach these facts if you really want a nice, professional, retaining wall. The way I established the height of the base course was to use my vertical reference (the outside retaining wall) and drop a plumb line to where I wanted the first course to start. At least one course needs to be fully buried, so that was taken into account in the measurement. I then located the first block as precisely as I could, measuring from the reference “flags” that I previously planted, and then did a lot of fussing around to get that first block level, square, plumb, and in the position that I wanted it. Once I had the first block in position, I went around the circumference of the layout to place other “reference” blocks so that I could work to those as I continued to set the base course.

I had to do a lot of trial-and-error to come up with a technique to reliably and quickly place the subsequent blocks in alignment. Professionals will dig a shallow trench, fill it with gravel, and then use a mechanical compactor to level the gravel. This is a great idea if you’re building a large retaining wall, or in an area that gets a substantial amount of rain, because waterlogged soil puts a lot of pressure on the wall and it’s important to have good drainage. I will probably do that on my back retaining wall due to the height, but for a small wall (12″) in an arid climate, I decided this was overkill. As a DIY’er, I’m always looking for a reasonable shortcut. At any rate, the method I came up with was this:

Loosen the dirt with a trowel.

Loosen the dirt with a trowel.

Level the dirt. Try to level a little bit above the bottom of the previous brick.

Level the dirt. Try to level a little bit above the bottom of the previous brick.

 

 

 

 

 

 

 

 

 

Plop the brick down to compact the dirt and align it with the previous brick. Check the cross-level. Looks good! (I was lucky.)

Check the back-and-forth level. This is very important because you will use this as a reference for your next brick. This one is not so good.

Check the back-and-forth level. This is very important because you will use this as a reference for your next brick. This one is not so good.

 

 

 

 

 

 

 

 

 

 

Beat on the high side with a hammer using a wooden block to protect the brick. This hammer is called an "Engineer's" hammer. In the Navy, we referred to this as a "persuader". Draw your own conclusions.

Beat on the high side with a hammer using a wooden block to protect the brick. This hammer is called an “Engineer’s” hammer. In the Navy, we referred to this as a “persuader”. Draw your own conclusions.

Level after "persuasion". Looks good!

Level after “persuasion”. Looks good!

 

 

 

 

 

 

 

 

Check the level from the previous brick to make sure that you're at the same height.

Check the level from the previous brick to make sure that you’re at the same height.

Check the alignment with your previous bricks. You don't want your wall to unintentionally start to meander. NOTE: if you're placing the blocks along a curve, then you need to measure the curve radius from a reference point.

Check the alignment with your previous bricks. You don’t want your wall to unintentionally start to meander. NOTE: if you’re placing the blocks along a curve, then you need to measure the curve radius from a reference point.

 

 

 

 

 

 

 

 

 

 

 

Check your level using a long level to make sure that you're keeping a good level all the way around.

Check your level using a long level to make sure that you’re keeping a good level all the way around.

 

 

 

 

 

 

 

 

 

 

One of the tricks I came up with was to chip off the shoulder that protrudes from the back of each brick. This shoulder is very important because it serves to lock each course to the course below. However, for the base course, it only gets in the way and adds unneeded complexity to the leveling process. So I decided to chip it off for the base course bricks, as shown in this brief video:

Base course, all laid out!

Base course, all laid out!

 

 

 

 

 

 

 

Now that the base course is all in, the job goes really fast. The hardest part is to lug these 30 lb. bricks from your staging area and plop them onto the course below. It’s a simple matter to align the edge of each block to the one next to it, and then to make sure that the shoulder (which you didn’t cut off for these bricks), rests firmly on the course below. The only challenge here is that you need to make sure that each subsequent course is “on bond” which means the brick on top is placed directly over the seam formed by the two bricks below. No big deal if you’re dealing with a straight line, but the bricks will go “off bond” on curves. This is because that shoulder displaces each course inward by about 1″, meaning that the radius of the curves get progressively shorter for outside curves, and larger for inside curves. In this case, I did what the manufacturer recommended, which was to make sure that the straight courses were on bond, and then work towards the middle of the curves. Inevitably, you will find yourself with a space that is too small for a standard brick, in which case, you will need to cut a brick to fit. While it is possible to do this by hand with a brick hammer, it is way easier to use a 7″ grinder with a wet-dry masonry diamond wheel. Fortunately, Santa Claus had the foresight to deliver this to me in my stocking this past Christmas, so I was all set! Seriously, if you are doing a fair amount of masonry work for a hardscape (brick walls, retaining walls, brick patios, etc.), this tool is well worth the money.

Once you have a couple of courses in, it’s important to backfill. This is because the Keystones lock with outward pressure due to the shoulders, but will fall inward if you stack them too high. The manufacturer and distributor both recommend backfilling with gravel, but that could be a major PITA (not the bread). If this were a big time retaining wall in a wet environment, I would do it, but for this little project, I decided to forego the added expense and construction complexity.

One other feature that I added to this wall was to put landscape fabric on the inside of the wall. This prevents plants from growing in between the seams of your brick, and it worked extremely well for a previous wall that I built. This feature is not in any of the manufacturer or distributor instructions, but I know of folks who have made these walls without the landscape fabric, and they constantly struggle with weeds growing out of their walls. This is cheap insurance and better for the environment than spraying a bunch of chemicals all over your wall. Here are some pictures of the finished product.

Two courses on top of the base course with landscape fabric. Ready for backfill.

Two courses on top of the base course with landscape fabric. Ready for backfill.

Finished center planter.

Finished center planter.

 

 

 

 

 

 

 

 

 

 

 

Becoming A Mason — Building A Brick Wall

So, after a MONTH of work, I finally finished this brick wall. Initially, I was planning to be all done on the BIG WEEKEND, President’s day, and my aim was to BUILD THIS WALL! Alas, I was seriously over-optimistic about the time it would take. (Really?) It turns out that masonry is pretty much a ball-buster, and I’ve been pouring all of my spare time into finishing the job.

Day One (2/13/15):

This was pretty much a “set up” day. I took the advice of my online mentor, Mike Haduck, and laid everything out dry. This was helpful because I found out where all the “warts” were and I had to  make some adjustments. The biggest goof was that I did not align my electrical conduit with the rebar. So I had to do a lot of cutting. I hope this will not weaken the wall too much. I also had to set up my workstations: where I would cut, where I would mix the mortar, and also figure out how to get materials from the workstations to the area of the work. This turned out to be pretty involved because I don’t have a lot of room to work with, especially when the building materials are taking up so much space. I ended up locating the brick cutting and mortar mixing operation on the opposite side of the driveway because it allowed me good room to cut the bricks, and a place to dump the water that I was using to keep the mixer clean between batches. The only downside was that I had to walk over every time I needed to cut a brick.

MIXING STATION. Moat catches water for drainage.

MIXING STATION. Moat catches water for drainage.

 

 

 

 

 

 

Handling the mortar turned out to be tricky. Never mind that the sacks of mortar mix weigh 94 lbs. It is possible to heft these bad boys into the mixer, dump the bag in, and then reach down and poke the bag with you brick hammer or trowel, and then extricate the paper sack. Get the mixer going and add water until you get a nice slump. Now the tricky part. You can’t just dump this into a bucket because it goes all over the place. So the sequence is: dump the mixer into the tub, use the trowel to scoop the mortar into a bucket, and haul the bucket to the area of work. From there, you can put the mortar onto your mortarboard, and get to work. Before I laid any brickwork, I rinsed out the mixer because I didn’t want the leftovers to harden up. A professional crew will have the mixer going all the time, and the apprentices will be hogging the mortar, which will be used as fast as they can make it. Not so with me, and I daresay any DIY working alone. Mortar has  approximately 2 hour working time, and I used all of it for the one bag. Actually, it was less than one bag, because I used some of it to make my lintel. But that was just as well because I had to work on buttering technique, and had to deal with uneven surfaces and pay a LOT of attention to laying that first course. If that is messed up, then all subsequent courses will have the same problems.

DRY LAYOUT

DRY LAYOUT

 

 

 

 

 

 

 

Day Two (2/14/15):

I started working at 7:00 AM and worked until 6:00 PM. Although I didn’t get to actually laying brickwork until 8:00 AM, due to some setup time and the fact that I had to extend a couple of rebars to the height of the finished wall, it was a long day of work. I finally learned the correct technique for buttering a brick. You have to hold the trowel at an angle to the edge, maybe 30º, but it is upside down! That is why settling the mortar on the trowel is so important — because it won’t fall off when you turn it upside down. I tried the wrist snap method, but alas, my forearms are too weak. So I started to bang the trowel onto the mortarboard, and that seemed to work. In addition, it is important to wet the end of the brick that you are trying to butter. The mortar won’t stick if the brick sucks out the water. Maybe that’s because I live in an arid climate. Nevertheless, Mike Haduck’s advice about having mortar stick to wet surfaces is germane.

Now, to laying the brick. It is extremely important to lay the brick down gently, and to have enough mortar to have the brick settle above and farther away than what will be the final position. You then jiggle the brick back and forth to settle it in the mortar, and then take some measurements. Is it level in both directions (longitudinal and side-to-side)? Is it aligned with the course (or line) below? Is it aligned with the course below to produce a running bond (meaning each course is spaced by 1/2 the length of the brick)? Now, I take a soft-headed hammer and gently tap the brick into its final position. Pro masons use the butt of their trowel, but I found that I always had mortar detritus that sticks to the trowel splatter over my nice clean bricks, so the hammer was a better choice (for me). I scraped off the excess on the outside, and returned that to the mortarboard.

After laying a few bricks, I went back and sponged off  the excess mortar and used a jointer tool to make nice concave lines in the joints. It’s important to keep up with this as you go along because the mortar tends to set up fairly quickly, so you only have a short amount of time to clean up and finish the joints nicely.

I also discovered that I had no concept of the size required for mortar joints between the bricks. This required me to make a few extra cuts to bricks which I had previously crafted due to a faulty dry layout. Alas, part of the learning process,

The other thing I discovered was that as the 2 hour limit approached, the mortar really started to set in the bucket. The solution was to finish whatever course I happened to be working on, and then dilute the remaining mortar with some water to give it some fluidity, and then dump it in the cells with the rebar. Those cells have to be filled up anyway, so use up what you have! I finally built up at least one course on each level and I anticipate that the work will go faster because (a) there are fewer obstructions (misplaced rebar and conduit), and my technique is improving with practice. One thing that I did NOT skimp on was accuracy. I take my time with each brick, making sure that is level and square, and then I check the line with my 6′ level to make sure that I’m not slowly going out of whack. Then I sight down the line, using my human ability of stereoscopic vision to see if everything is lined up straight. Never underestimate the accuracy of your eyes. They’re simple to use, and you can see if everything lines up if you take a few steps back.  It may be slow going, but nobody will care about how long it took, because they won’t know. If I were doing this for money, then I would be out of business pretty fast. That’s why pros can do in a day what will (likely) take me several more days. But I’m confident that my results will be professional grade. So far, it looks pretty good!

FIRST COURSES

FIRST COURSES

 

 

 

 

 

 

 

 

 

Day Three (2/15/15):

I’m beginning to really feel the strain. Masonry is hard work! There’s lot’s of lifting involved, and lots of repetition. That said, I’m finally developing a rhythm with mixing the mortar, cleaning up the mixer and the plastic tub I dump the mortar in after I mix it, putting the mortar in a 5 gallon bucket (it fills it up perfectly, so maybe that’s why it’s a 94 lb bag), and hauling the mortar out to where I’m going to work with it. I’ve come up with a sequence of using water which makes multiple uses of water to rinse out the mixer and various vessels so that I don’t use any more water than I have to. I’ve also discovered that the mortar needs a few minutes of mixing, so I let the mixer run while I pull the next set of blocks and lay them out so I’m not constantly walking back-and-forth to the pallet.

Finally, I decided to figure out a way to set up the mason’s line. What a difference!!  I couldn’t find a “how to” on YouTube (at least very easily), so I made my own video, and you can see it at the end of this blog post. At any rate the  mason’s line practically eliminates the necessity to carefully tweak each brick and use a level multiple times. That being said, there is still a lot of work to be done after the brick is put in place. You have to use a jointer to clean up the excess mortar in the joints, and then go over all the bricks with a sponge and a wire brush, wetting the bricks generously, to get off the excess mortar. Turns out that you swipe some mortar down the side of the bricks when you butter the bricks with your trowel. Cleaning it up after you finish the bag of mortar is easy because, although the mortar has set up, it’s still readily removed with water, a sponge, and a little elbow grease.

Day Four (2/16/15):

Although I was very motivated to work this day, I was totally beat. I listened to my body and took the day off. Alas, my work was only partially complete and I knew that a few weeks of work lay ahead, based on what I was able to accomplish. Because I am a numbers guy, I found out that the maximum I could produce in a single, dedicated day, was 4 bags of mortar mix, which roughly equated to 2 courses of brick. Seeing as how I had to make at least 8 courses, that means that I had another 3-4 courses to go, meaning at least two more weeks. So much for finishing the wall during this long weekend. That’s OK. Taking on a project in which I had minimal experience in the trade would naturally take more time, and my original schedule estimates were based on optimism instead of experience. But now I know better and I now have the experience to do a better estimate and work more efficiently. Yes, there were some quality issues which I had to work through, but the quality improves with each course, and, being a long-time DIY, I know how to recover (i.e., hide) my mistakes. Only I will know. And you, who read these words. Those who have seen my work in person are quite complimentary, and I’m fairly sure that you would agree. It looks pretty good. And I’m my worst critic.

Weekend #2 (2/20/15-2/22/15):

With rain in the forecast (God knows we need it), I was only able to get a few courses done on Friday. Even with my new-found skills, the best I can do is about 1 bag of mix in 2.5 hours, which means that I can only lay 2 courses (4 bags) today. However, that’s progress, and I’m getting more skilled and gaining confidence with each brick. The mason’s line makes the actual bricklaying go fast, and it’s rock-solid level and straight. Still, the scut work of dealing with mixing the mortar and cleaning up, and the detail work of finishing the joints and cleaning the excess mortar from the bricks still takes what seems forever. Still, I like the result. And apparently so does everybody else. I’ve been receiving a lot of compliments!

END OF WEEK #2

END OF WEEK #2

 

I spent Saturday making up the new mailbox assembly (2 mailboxes on a post).  Although there was rain in the forecast, it was very spotty and I probably could have done some more bricklaying, but I did get the mailboxes done, so it was not wasted time.

Sunday was a total rain-out. I spent the day going to church, relaxing, and making a nice Sunday dinner for everybody (main dish salad with butter lettuce, white wine dijon vinaigrette, oven roast chicken with zaatar and olive oil, fresh (home-made) pitas, and white bean hummus), and drinking beer. Not necessarily in that order.

Weekend #3 (2/27/2015-3/1/2015):

The weather is clear and I am cookin’ with gas! The routine is down, the skills are learned, and I’m building a wall like a mason! I still have to perform all of the tasks that the apprentices and journeymen do, and since I am definitely NOT a master mason, I guess that’s all there is. Come to think of it, if you’re a master mason, then you probably have your own business, so you’re probably not slinging mortar. You’re busy doing other things, like getting more jobs, dealing with all the paperwork and bureaucracy, hiring and keeping skilled employees, and providing quality control and experienced advice for those “tough” situations. In general, it sometimes sucks to be the boss. Still not “quite” done, but we just switched to daylight savings time, so that means that I’ll be able to work weekdays when I get home, and I intend to make the most of that!

ALMOST DONE

ALMOST DONE

 

 

 

 

 

 

 

I cooked Sunday dinner again. This time we had beer can chicken (my signature dish) with Meyer lemon-rosemary-garlic butter baste, oven roast yukon gold potatoes, and hobo-pack asparagus. For dessert, we had Meyer lemon upside-down cake. There was a really cool recipe in the latest Sunset magazine that had a whole section on what to do with Meyer lemons. We have a Meyer lemon tree, and it is chock-full of nice ripe fruits, so I wanted to take advantage of the season. The cake part was made with cornmeal, in the style of an Italian polenta cake. Man, with some sweetened whipped cream, it was awesome. As I mentioned in my previous post on kitchen design, I have the best restaurant in town!

Week #4 (3/9/15-3/13/15)

Daylight savings time is here, and I’m going to take advantage of it! I had time on Monday and Wednesday, and I was able to get 1 bag of mortar worth of bricks done each day. I’m counting in bags because that defines a set time (2.5 – 3 hours) and a set amount of bricks (~16) to finish. I was finished with the main wall on Monday, and on Wednesday, I finished all but the caps of the wall that separates me from my next door neighbor. On Friday, I capped off that separator wall, and then turned my attention to fixing a broken wall that our Home Owner Association owned, and that one of the board members requested me to try to fix it. What the heck! I had leftover bricks and all I had to do was buy $5 worth of mortar mix. NBD.

FINISHED WALL

FINISHED WALL

SOUTH VIEW

SOUTH VIEW

 

NEW MAILBOXES. This is what I spent a "rainy" Saturday putting together. Gotta wipe off the grinding dust from my brick cutting operation.

NEW MAILBOXES. This is what I spent a “rainy” Saturday putting together. Gotta wipe off the grinding dust from my brick cutting operation.

BROKEN HOA WALL

BROKEN HOA WALL

FIXED HOA WALL

FIXED HOA WALL

 

 

 

 

 

 

 

 

 

Nice Finish!

Nice Finish!

 

DEAD-ON

DEAD-ON

 

 

 

 

 

 

 

 

 

Some parting thoughts:

  1. I am NOT a mason. I just happen to have learned some masonry skills. I am a DIY guy. Masons are professionals.
  2. Professionals have tons of experience through thousands of hours of work. I probably have seen precious few of the array of problems that professional masons have to deal with. A good example is when I was trying to sandwich a brick between two others that were on the top and bottom because I was doing a repair instead of simply building a new wall. I have no idea how to butter (get the mortar in)  between both the bottom and top of the brick I have to insert. I ended up shoving in some with my fingers. I’m sure that there are better ways, but I only had 4-5 do to, and I’ll probably never do it again. Still, I’d be interested in figuring out how to do this.
  3. “Professionals” can make mistakes. The pressure to get the job done fast sometimes causes quality problems. In my case, I was capping off the wall that separates me from my neighbor, which was built by the original contractors. When I set up the mason’s line, lo and behold, the wall was not straight! Lesson: don’t be intimidated by “professionals”.
  4. I like the result. The epitome of being a DIY’er is that you can step back and take some pride in what you have created. The compliments from my neighbors are frequent and very welcome, but looking at it, as a manifestation of my creative efforts, gives me very deep pleasure.
  5. The other reward is that I’ve learned a new skill. Granted, I already have some basic building skills, and I learned a lot up front from my Internet studies (thanks Mike Haduck). But I had to make the effort and take the risk. I have a beautiful new wall, I am deft with the trowel, and I have an appreciation for those hard-working apprentices. I call that progress.

Here is my video on how to string up a mason’s block.

 

Masonry — How To Learn A New Skill!

Let’s face it. If you are a dedicated DIY’er, then you have to be willing to take on new projects which stretch your skills. Otherwise, you wouldn’t make any progress on the DIY highway. The reason that I say “stretch” is that expanding your skill set really means building on your existing skills.

There are some fundamental skills that anyone who builds must have. You have to know how to measure. You have to know what it means to be level, square, and plumb. You have to know how to think in 3 dimensions. For example: if you’re cutting a board into 24″ sections, then you have to take the kerf of the saw blade into account. Thus, you need to measure 24″, 48-1/8″, 72-1/4″, and so on. If you don’t, then every cut will be 1/8″ shorter than the previous one, and that can add up! Or you can cut and the repetitively measure. That’s what I tend to do (easier to keep track of, but takes more time). Building is fundamentally a creative art and, as such, you have to have a feel for materials and you have to like working with your hands. Your intuition also plays a big part and is an invaluable skill in and of itself. Don’t be afraid of it!

The next level is to take stock of the materials that you will be using. This generally takes two forms: (1) the actual material and, (2) the things you need to stick it together. For a wall, that will mean (1) lumber and drywall, and (2) nails, screws, tape, and drywall mud. For a masonry fence (what I happen to be building), that means (1) concrete block (i.e. concrete masonry units, or CMU’s) and caps, and reinforcing materials (rebar, anchors), and (2) concrete (for the footing), and mortar. Don’t forget the wire ties for the rebar and the rebar chairs to elevate your rebar assembly so it doesn’t bottom out  in the footing.

Understanding your materials is very important because you will be manipulating these materials to produce your DIY masterpiece. How do I cut it to size? How do I move it around and put it in place and how to keep it there? The answer to this second question is always very important to a DIY’er because, for the most part, you’re the only person there. In fact, the ability to do a job by yourself, without help, can be a crucial factor in deciding whether to go the DIY route, or to hire the job out. That is why I plan on hiring out my sidewalk concrete job.

Then there are the tools. Ah, tools! The MOST important tools that you have  (and everybody has) are your hands, your eyes, and your brain. That is why safety is SO important, because it becomes vastly more difficult, if not impossible, to do DIY projects if you are injured. See my previous post on safety. That being said, you just can’t cut wood or rebar with your hands. You need tools, which are basically extensions of your hands that perform a specific task. Tools can be segregated generally into the categories of measure, cut, beat, twist, or squeeze. The tools become more nuanced depending on the material you are working with, and generally can be grouped that way. Woodworking tools are different than metalworking tools, are different from masonry tools, etc.. You won’t use a hand saw to cut rebar, nor will you use a grinder to cut wood. So, to accomplish a project, you will likely have to get tooled up! And each new project can be viewed as an opportunity to add to the tool stable. If you’re just starting out, then obtaining the tools you need may be more expensive than the materials for the project. Fear not. Tools are an investment, and you can use them for the next project (and the next, and the next). Eventually, the ratio of tool to material expense goes way down, but NEVER to zero! There is ALWAYS room for one more tool. As an example, because I am taking on a masonry project for the first time, I had to invest in a number of tools, seen in these pictures.

Masonry Tools That I Bought

Masonry Tools That I Bought

 

Safety Equipment: Gloves, Safety Glasses, Hearing Protection, Breathing Protection. DON'T SKIMP!

Safety Equipment: Gloves, Safety Glasses, Hearing Protection, Breathing Protection. DON’T SKIMP!

Finally, to actually build, you have to apply your tools and your skills to the materials and start the creative process. But what if your skills fall short? Well, you have to self-educate. That means one of two things: learning by doing and making mistakes, and learning from others who have made their mistakes. This reminds me of one of my favorite sayings ever:

Good judgment comes from experience. Experience comes from poor judgment.

So, the BEST learning comes from your own experience (and mistakes) because you’ll remember them. However, that imposes a lot of risk and wasted time, so the BEST approach is to learn as much as you can from others with experience, and then go ahead and get some experience for yourself. That way, your mistakes, which you WILL make, will be less common and of less consequence. Before the Internet, I used to get all of the books and magazine articles I could on whatever subject I needed to study and spent a lot of time going through all of it. Now, the Internet has not only vastly more information on any given subject, but there are also VIDEOS which, for me, make all of the difference. To see a master craftsman with 30+ years of experience showing you how they do it, step-by-step, is almost like being in an apprenticeship program. Except that you don’t have the master yelling at you when you screw it up. That is left as an exercise for the you, the student.

For masonry work, I found a guy called Mike Haduck, who is a master mason in Pennsylvania. He has a YouTube channel  (here)  which is really good, and he covers every aspect of masonry that I could possibly imagine. He has great humility and in my mind is a great teacher, but why I really like him is because one of his tenants is that “there is no one right way”, meaning that his way is not necessarily the only way that you can produce a good result. It’s just his way. For a DIY’er, just getting insight on any way that works is better than nothing. However, because each job has its particulars and nuances, you have to remain flexible and, when necessary, do a riff on the basic techniques to make things work for you. And, as you get more experienced, you may develop your own ways which you can carry forward to other projects.

Here are some pictures of getting ready for the project:

Ready For The Footing

Ready For The Footing

Pouring the Footing

Pouring the Footing

Footing Completed!

Footing Completed!

Always sign your concrete work!

Always sign your concrete work!

Brick Delivery

Brick Delivery

Building Materials. Christmas in February!

Building Materials. Christmas in February!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I also had to make a lintel, which is a piece of masonry that spans an opening. I followed Mike Haduck’s You Tube instructions (see here), and here are the pictures of the effort:

Making the Lintel. The 7" grinder is a new tool Santa gave me for Christmas!

Making the Lintel. The 7″ grinder is a new tool Santa gave me for Christmas!

Tools for rebar cutting: Measuring tape, 4" grinder, work stand (work-mate or equivalent) and a sharpie.

Tools for rebar cutting: Measuring tape, 4″ grinder, work stand (work-mate or equivalent) and a sharpie.

Bent rebar, cut blocks, and mortar, ready for assembly

Bent rebar, cut blocks, and mortar, ready for assembly

Finished lintel. I didn't pound it, like Mike did, so I hope it will be OK.

Finished lintel. I didn’t pound it, like Mike did, so I hope it will be OK.

Time for cleanup. Always keep your tools clean (especially masonry tools) and always clean up after a day's work. My dad taught me that.

Time for cleanup. Always keep your tools clean (especially masonry tools) and always clean up after a day’s work. My dad taught me that.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now, I’m ready for the President’s Day long weekend, and I’m very much looking forward to it. This will be the culmination of a lot of work in that this will be the construction of something that will be actually be permanent and seen by all. Stay tuned…..