Roughing It

Now that the wall framing was up, it was time to start installing everything that goes inside the framing. That means electrical and plumbing lines, and in my case, data cables and fire sprinkler piping. In this entry, I’ll briefly address the rough electrical, plumbing, and data lines, as I will have a separate entry on the sprinkler system (because it’s unique and cool).

Rough service work begins with locating where you want to put stuff. For plumbing, that’s usually spelled out in the plans, e.g., where you want the sink, shower, and toilet, so that part is pretty easy, and the relevant dimensions of where the plumbing fixtures connect are standardized. However, there are some nuances that must be considered, and since I’m doing an entirely custom installation, I decided to get all of my fixtures up front. That way (a) I could look at the installation instructions and actually do measurements if I needed to, and (b) the fixtures all matched. It cost  quite a bit up front, but at least that expense is taken care of (!). So, I went ahead and marked where I wanted the toilet, sink, and shower drains and water supplies to go. Now, I had to learn plumbing.

Supplies 1

All fixtures and parts for the bathrooms, plus the toilet and sink for the MBR bathroom.

Supplies 2

The rest of the parts for the bathrooms. I also bought all of the tile at once to make sure I had it from the same run. Lots of stuff to warehouse!

As a chemical engineer and as an engineer on a nuclear sub, I figured I could deal with the technical aspects of a residential plumbing job. I had to review the relevant codes to make sure I was in compliance, but then I figured, how hard can this be? I was about to find out….

I decided to start with the toilet drain because it was the largest pipe and I found out I would have to be doing some tricky routing through the joists, which I had previously tripled to shore up the master bedroom floor structure. These extra thick joists turned out be be troublesome because the pipe had to be angled to get the slope correct and the hole saw that I was using was only slightly larger than the OD of the pipe. I eventually hammered it in but getting that last joint together was a bitch! I hope it doesn’t leak.

Toilet Drain

Toilet drain piping. See the tripled joists surrounding the pipe? I had to drill big holes through those and ram the piping in!

The next challenge was putting together the water supply system for the showers. I decided to ramp up the quality of the showers by installing a “smart” shower system that uses an electronic control in the shower to remotely control the mixing valve. I went with copper pipe because that’s what the house had to begin with, and I sure got some good experience in sweating the pipes together (turns out that it’s not that hard). The best advice that I got was to use MAPP gas instead of propane. The higher temperature of the flame makes the solder flow much better. Nevertheless, It’s a complex setup and I ended up gouging one of the press-fit O-rings when I inserted the pipe into the mixing valve, so it caused a bit of a mess when I turned on the water to pressure test.

Shower Mixing Valves Annotated

Diagram of the remote shower mixing valves. These are located in the garage directly below the bathrooms. The hot and cold water supplies connect to the mixing valves and the remote controller sets the temperature and volume through the controller signal lines. The water then goes directly to the shower head(s).

Remote Shower Control

Remote shower controller. This is all electronic and has a memory for 4 different settings (his/hers/morning/after workout/whatever).

 

I also found some cool water supply valves that were recessed into the wall and had a very clean look. They are called “stop pull boxes” and are made by a company called “LSP”. If you’re interested, here is their website: LSP Pull Stop Box

And some pictures:

Recessed Water Supply Valve 1

Recessed water supply valve. The valve is the brass fitting in the middle. If you look closely, you can see the ball valve itself (the silver thing in the middle). This is really slick because it’s behind the drywall and the valve is operated by a pushrod attached to the threaded rod on the left-hand side. Looks very clean after installation which I thought was important for a pedestal sink.

Recessed Water Supply 2

Recessed valve installed. The eustachon will cover the hole OK. The brand is “LSP” and the device is called a “pull stop box”.

Going on to rough in the electrical, the plans are important, but I decided I wanted to do some Human Factor Engineering to get the exact location of the switches and lighting fixtures. I imagined myself doing everyday tasks like going to the bathroom, going to the shower, getting dressed, getting ready for bed, etc., and that helped me locate switches so that (a) they would be easy and intuitive to reach for and (b) I could operate the lights from different locations to minimize going back and forth when I wanted to turn something on or off. I also put in extra wall receptacle boxes, especially near where the bed and home office would be. Receptacle and switch boxes are pretty easy to install, so with that done, I was ready to start running wires.

Rough Electrical Bedroom

Example of the customization that one can do if you’re doing this yourself. I added the data and power boxes for the flat screen TV at the last minute (at no cost to the customer).

Running the wires for the rough electrical is something that’s not typically in the plans, which only show the locations of the receptacles, switches, and fixtures. I guess I could have done a schematic diagram, but I figured I would only be doing this once, and as long as I was disciplined in labeling each wire, I would be OK. To run the wires, I did have to plan out where I would be bringing in power from the electrical panel, and then how that power would be distributed throughout the room. The bedroom has two circuits: one for the sink in the bathroom, which needs to be a dedicated GFCI circuit per code, and one for the receptacles and lights. The “current” electrical codes (pardon the pun) require that receptacles in living spaces (bedrooms, living rooms, dens, dining rooms) be AFCI protected, so I needed to take that into account as well. The dedicated GFCI circuit was pretty easy (one wire from the panel to the receptacle), but the other wiring was more involved. The first thing that I did was to bring in power to a receptacle box, and then distribute power to the other receptacle boxes from there. The lighting circuits then tapped off the receptacle boxes.

One thing to keep in mind is the number of wires you have running in and out of each box, and the number of “devices” (switches, receptacles, both of which are referred to as “yolks” in the trade). There is a limit based on the heat load, and there’s a fancy calculation in the NEC, which it turns out, is not trivial. Here is a link to an good explanation. To make things a little easier, I just always get the biggest box possible for the number of devices I want (switches/receptacles) and have not run into any problems.

Electrical Switches and Receptacles

Good example of tailoring the electrical controls beyond the minimum. I can control both lights outside the garage (front and side) and the garage work lights from this location. The front garage door light can also be controlled from the master bedroom and the front door because it is a security and safety feature. I’ve also installed smart switches, where necessary, to allow control automatically under given conditions (e.g., coming home at night, opening the garage door, fire alarm or smoke detector goes off to illuminate egress routes). The receptacles with built-in USB chargers are a must, pretty much in every room.

Routing the wire takes a little planning. The main idea is to drill as few holes as possible, which typically results in running the wires in the ceiling. The other “trick” is to unroll the wire so that it’s flat. If you just pull the wire from the roll, then it will come out twisted and be difficult to staple neatly to the framing. Unrolling it before you pull the wire takes some effort: you have to pick up this heavy roll and heave it ’round several times. But it pays off with a neat and professional installation.

After the wiring was installed, I needed to energize some circuits so we could continue to live normally (if you call living in a house during a remodel “normal” — I guess it’s the “new normal” for us). Despite my supreme confidence in my ability to install some relatively simple electrical work, I flipped on one of the breakers and there was a loud “pop” (“arcing and sparking” in the trade).

Electrical Boo Boo 2

I thought I smelled something funny. Better find out what happened here!

Turns out that I tightened down the cable clamp too tightly and the clamp cut through the insulation and caused a short.

Electrical Boo Boo 1

Forensic analysis showed that I had tightened down the strain relief so much that it cut through the insulation and caused a short. More is not necessarily better!

I felt pretty bad and embarrassed about that, but later, after doing some additional reading in my electrical “how to” books, I found that these sort of things occasionally happen even for the pros. I guess that’s one way to get experience! At any rate, I had to pull the entire cable and replace it because you’re not allowed to splice or patch an electrical cable. All interconnections must be in electrical boxes that have an opening through the drywall to prevent an electrical short from causing a fire behind the drywall.

Lastly is the data cabling. For my project, I’m running a minimum of 2 cat6e ethernet cables and one RG-6 cable per room, but the the master bedroom and home office, I ran quite a few more. I started with standard electrical boxes, but found that low voltage boxes are easier to work with, so from now on, I’m using those. Because these cables are circular in cross section, there’s no need to be too fussy with the unrolling. However, the installation should still be neat. I found some nice cable organizers that allowed me to create nice data cable runs, which was important as the cabling multiplied as I approached the wiring closet.

Data Lines Annotated

Data cables running through the attic. With a minimum of 2 Ethernet and one coax cable per room, that added up pretty quickly. I put a lot of these in the master bedroom because I wanted the cables for a flat screen TV and a home office.

Wiring Closet

Wiring closet replaces the furnace, which was relocated to the attic. All data cabling from the upstairs is run and neatly bundled (on the right). The loose stuff is the cabling from the living room and garage, which needs to be bundled later when I run the rest of the downstairs cabling.

Finally, I had to install draft stops. The inspector pointed this out to me, so that was something I was unaware of, but once I figured it out, it was pretty easy. Basically, wherever you have a penetration through the sole or top plates of your framing, you need to seal the openings. The best way is to use polyurethane foam that comes in a can. You can get a one-use can with an applicator, but I found that hard to control, so I ponied up for a pro applicator, Worked much better, and I figured I’d be using it for other things.

Draft Stop

Draft stop for the data lines coming into the wiring closet. I also had to accommodate the gas line going up to the furnace, which is now in the attic.

So with the rough work done, it was time to put in one of the true infrastructure “upgrades” that I planned for this remodel: a residential fire sprinkler system. Stay tuned…..

 

The House That Frank Built

OK sports fans! This moment has been many years in the making. The moment when I, and only I, will bust out the structure of our house with the intention of EXPANDING our living space and making a fantastic en-suite (master bedroom-master bathroom) in a manner that puts HGTV to shame! Because this is a big task, and I needed to focus all of my spare time on it, I haven’t made a blog entry for a while. It’s either work on the house and generate material for the blog, or write the blog and make stuff up. I prefer the former. I took 2 weeks of vacation to accomplish this bodacious task, and I got most of the way through. At least I put up the walls and the roof trusses. But it took another 4 weeks of my spare time to finish the roof structure, put the trim on, and finally cover the roof.

Phase 1: Demolition.

As with most building projects, the first part is the demolition. I know I’ve been talking about demolition a lot, so I won’t bore you with too much more of it. As with most demolition projects, the best course of action is to work from the top down, and to disassemble whatever you’re demolishing in the opposite order that it was built. Because the bedroom extension will also result in extending the roof (sleeping under the stars is OK if you’re camping), I began by stripping the shingles from a portion of the roof. My biggest concern was roof safety. If there is anything dangerous in this endeavour, this is it. So I took some time to get the proper equipment: roof jacks, scaffolding, and a safety line with a harness. Yes, it cost a few bucks, but it’s cheap insurance. As I have mentioned in previous posts, I’m a bit obsessed with safety. The other nifty tool that I got was a roofing shovel. This tool has a notched spade that you ram underneath the shingles to get under the roofing nails, and a fulcrum that allows you to pop the nails right out. The technique is to start at the top of the roof, and after you pry off the ridge shingles, you get a start on the shingles at the top and then just go to town. That being said, even with the right tools and safety equipment, it’s hard, tedious, and somewhat messy work.

Safety harness and safety line. It's kind of a PITA to work with, but it sure provided me peace of mind. This is what all the pros use now.

Safety harness and safety line. It’s kind of a PITA to work with, but it sure provided me peace of mind. This is what all the pros use now.

Roof safety: Roof jacks to provide a solid base for working.

Roof safety: Roof jacks to provide a solid base for working.

Roof stripping complete. Took me all day.

Roof stripping complete. Took me all day.

 

Next was the trim. One might think that removing trim is no big deal. But it was to me because I had to get way up high and had to bang and lever stuff around, keep my balance while precariously perched on the scaffolding and ladder, all the while making sure that whatever fell down didn’t fall on me. The other bad news was that we were experiencing a record heat wave, so that meant that every push and pull was accompanied by beads of sweat in my eyes, lack of energy, and dehydration. I kept trying to drink as much water as I could, but there’s really no way to keep adequately hydrated while doing heavy physical labor in 96 degree heat.

Roof overhang and trim removed.

Roof overhang and trim removed.

Now, on to the messy part: Knocking down the walls. This part of the demolition worried me a bit. I didn’t want to spend a lot of time cutting stucco vertically on the wall, but I needed to get the wall down in pieces that were not so big they would damage the subfloor when they would inevitably come crashing down. I first had to knock down the gable wall, first by taking down the triangular portion of the gable by splitting it at the top plate, and then taking down the vertical walls. Since the side walls are load bearing, I had to build a temporary structure to accept the load. Also, I only took down one of the side walls at a time so only one side of the roof was unsupported. Because I didn’t want to have to cut stucco while precariously balanced on a ladder from the outside, I decided to pull the wall down from the inside. Since I know that the easiest way to cut the stucco is when the stucco is lying flat, I decided to yank the whole wall down and then disassemble it. Sure enough, with all of that weight of the stucco, it came down with a big crash! This turned out to be a very bad thing because I, like a dummy, did not think to put temporary bracing under the joists of the bedroom floor. Here is the result:

Gable wall demo complete. What have I gotten myself into?

Gable wall demo complete. What have I gotten myself into?

Temporary bracing to transfer the roof load to the floor. Too bad I didn't complete the job by constructing concurrent bracing to properly transfer the load from the underlying joists to the slab foundation below.

Temporary bracing to transfer the roof load to the floor. Too bad I didn’t complete the job by constructing concurrent bracing to properly transfer the load from the underlying joists to the slab foundation below.

Wall before demo.

Wall before demo.

Wall after demo.

Wall after demo.

Minor damage from the downfall of stucco. I had a surprise coming.

Minor damage from the downfall of stucco. I had a surprise coming.

Joist failure as a result of not properly transferring the load to the foundation. I'm going to put a bag over my head when I call my engineer for recommendations.

Joist failure as a result of not properly transferring the load to the foundation. I’m going to put a bag over my head when I call my engineer for recommendations.

Cracked joists. I needed to deal with termite damage anyway, so really no extra work. But I sure feel dumb!

Cracked joists. I needed to deal with termite damage anyway, so really no extra work. But I sure feel dumb!

Phase 2: Build the walls.

One of the tricky things about building on a second floor is that you actually have to get the building materials UP to the second floor. This meant spending the better part of a day tediously pushing lumber, mostly one piece at a time, up a ladder and onto the second floor. I had to plan ahead to make sure that I had all of the lumber for the entire build, including the interior framing and plywood, because I did NOT want to struggle hauling this stuff up the indoor stairs after I closed in.

Lumber delivered. Now, to get it up to the 2nd floor!

Lumber delivered. Now, to get it up to the 2nd floor!

Building a standard wall for a house is pretty straightforward. You layout and cut the lumber, build and sheath the wall while flat on the floor, and then raise it up. The easiest way is to start by carefully aligning your sole and top plates, and then doing the layout of the studs all at once. This not only saves time, but more importantly, helps to make the wall square because all of the top and bottom measurements are the same. The next thing to do is to make a “kit” for all of the framing lumber. This not only includes all of the studs, but also the headers, sills, cripple, and jack studs for the window and door openings, as well as the framing for each corner. From there, it’s a simple matter of separating the sole and top plates, scattering in the pre-cut parts, and then methodically nailing them together. It’s important to follow a nailing schedule, meaning that the prescriptive codes require specific sizes and spacing of nails for a given assembly. For example, a stud to sole plate or top plate can be two 16d nails driven longitudinally into the stud (“face nail”) or three 10d nails driven in from an angle (“toe nail”). Fortunately, the County of San Diego has a convenient summary sheet of all of these requirements, which the plans inspector “suggested” that I include as part of my building plans. I took the hint.

Wall lumber cut to length and organized to form a "kit". I did this for the lumber for all three walls.

Wall lumber cut to length and organized to form a “kit”. I did this for the lumber for all three walls.

All kit parts need to be labeled so you don't get confused. These are labeled "C/O" for "cripple" stud (window), and "outside" because the top is cut at a 5º angle to allow for water drainage from the sill.

All kit parts need to be labeled so you don’t get confused. These are labeled “C/O” for “cripple” stud (window), and “outside” because the top is cut at a 5º angle to allow for water drainage from the sill.

The next thing to do is to sheath the wall. In many building situations, it’s better to put the wall sheathing on after the walls are raised because you can do some adjustments for dialing in plumb and square, and you can apply the sheathing in a fashion that overlaps the structural assemblies to add some strength. However, it’s more difficult to fool around with large pieces of sheathing, particularly plywood, when you’re trying to hang it vertically. Putting the plywood on the walls while they were still on the floor was a no-brainer for me as a one-man-show. One thing I learned about walls is that 2×4 lumber can be pretty flexible on this scale. You have to use a big sledge hammer to bang stuff around, but it’s important to square things up before you put the plywood on, because once the plywood is attached, it ain’t movin’!

Lastly the wall needs to be raised. There are lots of pictures of construction crews all gathering around a wall, and with a mighty “heave ho”, the wall comes up. Not possible with just me doing the heaving. Fortunately, there is an outfit (Qualcraft) that makes something called a wall jack. This operates much like the old-fashioned car jack that you used to hook under your bumper to change a tire. But instead of a metal jack shaft with teeth, it uses a long 2×4 piece of lumber. It’s pretty ingenious, and here is a short video and some pictures:

Wall jacks in position, ready for action!

Wall jacks in position, ready for action!

Close-up of wall jack. 2x4 screwed into the floor prevents kick-out.

Close-up of wall jack. 2×4 screwed into the floor prevents kick-out.

 

Last wall up, ready for trusses.

Last wall up, ready for trusses.

Phase 3: Place the trusses.

Now that the walls were up, it was time to get some help. The trusses, by themselves, are not particularly heavy, but they are difficult to handle and are fragile if they are handled while they are flat. Fortunately, the same co-workers that helped me place the big beam I needed for my garage portal were willing to spend a morning yanking these bad boys up and securing them into position. I only had 4 of these, but we had a little trial and error at first, so it took a little longer. I also had them come back to help me with the gable wall. Now, it was up to me to finish detailing the front of the roof line with outlookers and blocking.

Last wall up. Things are beginning to take shape.

Last wall up. Things are beginning to take shape.

Trusses delivered.

Trusses delivered, ready for installation.

My "crew". Their help was indispensable in completing this phase of the project.

My “crew”. Their help was indispensable in completing this phase of the project.

Trusses are up!

Trusses are up!

Gable wall and outlookers in place.

Gable wall and outlookers in place.

Phase 4: Finish the roof.

Finishing the roof was actually a two step process. I first needed to get the trim boards placed on the ends of the truss overhangs and outlookers. These are called “barge” rafters, and these were particularly long and heavy. I spent an entire day messing around with scaffolding and engineering a “third hand” to hold the rafter while I put it in place. But when I found it impossible to even the the board up there by myself, I knew it was time to call my crew back for another session. Sure enough, in about 3 hours, we were all done. Finally, I was able to get the roof sheathing in place. If this were a flat surface, this job should have taken about 3 hours. But because it was on a roof, I had to laboriously move around and reconfigure scaffolding, haul materials up and install them, and then move onto the next part. Getting the plywood up for the roof sheathing was also challenging. I decided to make a simple lifting fixture from scrap 2x4s that I screwed onto the plywood, and then used a rope to pull up the plywood. I also set up a couple of long boards to help the plywood slide up to the roof. This lifting fixture also proved valuable in placing the plywood because it gave me some leverage. Note that I had to place on piece of plywood at a time using this method, so, again it took a long time.

Another thing I learned about working on a roof is that it’s physically hard! That’s because you constantly have to fight against gravity because you’re working on a slope. Plus, there’s no shade (duh!). So, in addition to it being hot, all of that up-and-down and muscling the plywood in place really wore me out. In the end it took about a week (!) to finish the roof. But I liked the result.

Outlookers in place, ready for the barge rafters. Note the "3rd hands" to the right and left of the scaffolding on the outlookers.

Outlookers in place, ready for the barge rafters. Note the “3rd hands” to the right and left of the scaffolding on the outlookers.

Barge rafters in place. Beginning to look like a house!

Barge rafters in place. Beginning to look like a house!

Shiplap appearance boards are on the roof overhangs to match the rest of the house.

Shiplap appearance boards are on the roof overhangs to match the rest of the house.

Roof all done! Looks nice.

Roof all done! Looks nice.

The inside. This is going to be a nice bedroom!

The inside. This is going to be a nice bedroom!

The proud builder and his creation.

The proud builder and his creation.

Phase 5: Install the connectors.

Actually, installing the connectors is something that I did as I went, but I wanted to highlight the fact that the days are gone when you can simply use nails to build a house. Modern house construction uses metal connectors almost everywhere, especially between major components (e.g., foundation to first floor, first floor to second floor, second floor to roof). There are hundreds of connectors to choose from, but that was taken care of during the design phase, so the ones that I’m using are all in my plans. Each connector has a specific fastening schedule (number and type of fasteners), so you have to be pretty meticulous. I made copies of the specification sheets for each connector that I used, and highlighted each one and keep them in my permit book so that when the inspector comes by, I can show him what I’m working to. I really did learn something when I prepared for my inspections in the Navy!

Metal connectors for the roof, studs, and top plate.

Metal connectors for the roof, studs, and top plate.

Connectors between gable and front wall. I still need to add connectors between the wall and the rim joist on the bottom.

Connectors between gable and front wall. I still need to add connectors between the wall and the rim joist on the bottom.

I’m hoping the pace will now pick up with the roof, windows, stucco, and HVAC contractors coming in. Stay tuned!

 

It’s Electric!

While waiting for some more vacation time to accrue so that I could take a couple of weeks off and do the master bedroom buildout, I had a few weeks with nothing planned in particular. So last week, I decided to get some of my electrical work in. I’ve been researching this for some time and came to the conclusion that I would get the new service entrance panel and breaker panel all mounted and connected, and then I could call the city inspector. After passing that inspection, I could then contact the electric company (SDG&E) at my convenience and have the upgraded services connected at a time convenient for me. So I figured I could at least get the panel installation done.

The first thing was to order all of the parts. I had figured out most of this during the design phase of the remodel, so all I had to do was to re-familiarize myself with the work I already had completed, and then go back into the manufacturer’s catalog (I chose Eaton), get the part numbers, and then type them into the Home Depot website and put them on order for home delivery (that was free). 3 days and $1,000.00 later, I had all of my panels and breakers at the ready.

The next step was to open up the panels to see exactly how they were laid out so I could figure out what would go where, what knockouts I would use, what types of conduit and fittings I would need and what kind of wiring to get. I didn’t need a lot of wire because the panels are back-to-back, but it needed to be pretty hefty wire because it carries all of the house loads. One thing I had to figure out was how to lay out the grounding bus and neutral bus. If this means nothing to you, then you can (a) read my previous blog entry on grounding, (b) go to this website (http://www.wireyourownhouse.com) which does a pretty good job of explaining the terminology, or (c) skip ahead and forget the technical stuff. Since I like the technical stuff and it’s my blog, then I’m going to tell you all about it.

My brand-new meter panel. This is just like Christmas!

My brand-new meter panel. This is just like Christmas!

In most panels, the service (main) breaker and all of the feeder breakers are in the same enclosure. This arrangement allows you to install grounds and neutrals on the same bus. However, once you have a panel which is fed from another breaker (called a sub-panel), you now have to electrically separate the ground from the neutral. The reason for this is because if you have a unbalanced load running, such as a single 120v appliance, then there will be current running on the neutral, and if that neutral is grounded, it will be running through the grounding wire as well, which can be dangerous. It also can screw up the operation of your Ground Fault Circuit Interruption (GFCI) and Arc Fault Interruption (AFCI) breakers.

So, the way I have my panel wired up, with the main service breaker as part of the meter panel, I have to wire the panel with all of the circuit breakers as a sub-panel. Yes, it’s a little more complicated, but I wanted to be able to COMPLETELY de-energize the circuit breaker panel so I could work on it safely. All in one panels are NOT de-energized because you still have live voltage at the cables coming in from the meter into the top of your mains.

No big deal. All of these panels come with a neutral bus that can be separated by removing a jumper bar, and you can now have a separate neutral and ground bus. BUT, I had one problem. Nowadays almost EVERY breaker is going to have GFCI or AFCI protection. Out of the 21 circuits in my design, only 3 use conventional breakers. The GFCI and AFCI breakers have a “pigtail” which forms part of the sensing circuit and connects to the neutral bus. But I really couldn’t see trying to wire the panel with just one neutral bus without having pigtails on the opposite side making a complete mess and a wiring nightmare. If there is anything that I know about electrical work, it is that neatness counts. Big time. Yeah, you can get it to work if your wiring is a rat’s nest. but it will be difficult to work with later, especially if you have to troubleshoot or add a new circuit.  What I really needed was a neutral bus and grounding bus on each side of the panel so that I could have some flexibility in routing the wires.

Well, it turns out that the panel manufacturers make individual grounding busses that you can screw into holes in the panel that just so happen to match. So, I left the jumper between the existing ground and neutral busses and just didn’t connect them to ground, making them both neutral busses, and then installed two of the add-on grounding busses above and connected it all up with proper grounding wire.

Indoor distribution panel modified for neutral and grounding bars on each side.

Indoor distribution panel modified for neutral and grounding bars on each side.

With that problem solved, it was time to locate the panels and figure out how to attach them to the wall. I also had to make sure that it was vertically located to make it easy to work inside the panels, and met the utility company specifications for the height of the meter. The last part was to figure out how the wires would be routed so I could identify the correct “knockouts” to, well, knock out.

After some preliminary fitting, I temporarily attached the indoor breaker panel between the studs and marked the hole for the wires coming in from the meter. I then removed the panel, drilled the hole with a hole saw, and installed a short piece of threaded pipe, or conduit in electrician’s terms, so that the wires would be protected as they passed through the wall.

Closeup of the through-wall conduit, which is the silver pipe on the lower right. The yellow water seal is visible.

Closeup of the through-wall conduit, which is the silver pipe on the lower right. The yellow water seal is visible.

Turning my attention to the meter panel outside, now could locate it using the conduit coming from the inside as an anchor point. After some trial-and-error and trimming of the conduit coming up from the ground for the main power lines and ground wire, I marked the location of the mounting holes in the back of the panel and drilled holes for the mounting bolts. I chose to use carriage bolts for mounting the panel because (a) they would provide a good anchor to the plywood of the wall and (b) they could protrude enough so that I could get a layer of stucco on the plywood before I mounted the panel. More on that later.

Exterior studs and conduit aligned for the outer meter panel. Yes, the stud on the lower left looks a little out of line, but I needed to "adjust" it to make it fit.

Exterior studs and conduit aligned for the outer meter panel. Yes, the stud on the lower left looks a little out of line, but I needed to “adjust” it to make it fit.

Lastly, I needed to fit everything together to make sure it all worked. So, out with the inside panel (again) to install the bolts for the outside panel, replace the inside panel and fit the conduit into the hole in the wall, fiddle around with the outside meter panel to align it with the main power, ground, and thru-wall conduits, and finally fit the panel onto the mounting bolts. How does it look? Ugh! The damned thing was leaning over! But, never a project without some kind of do-over, and because I do a lot of this do-over stuff, I’m pretty good at it. One hour later, voilá! Nicely done.

Outside meter panel temporarily mounted., Want to make sure everything lines up before putting on the waterproofing building paper and stucco.

Outside meter panel temporarily mounted., Want to make sure everything lines up before putting on the waterproofing building paper and stucco.

Well, maybe that wasn’t the last step. I needed to make sure that the wall behind the outside panel was properly waterproofed, and if I installed it directly to the plywood, that would be impossible. The correct solution is courtesy of my favorite stucco guy, Kirk Giordano (http://www.youtube.com/user/StuccoPlastering). He showed a video of putting up stucco behind a new electrical panel with all of the proper waterproofing. In his instance, the panel was already located, but In my case, I could remove the panel to get better access. The key is to properly waterproof plywood with 2 layers of building paper, making sure that you flash and counter-flash around the conduit through the wall and the mounting bolts. Then, it’s time to do some stucco work! I really didn’t want to do a whole lot of it — just enough to make a nice surface in back of the panel. The professional stucco people that I plan on hiring will feather in around the panel and it will all look nice in the end. My job was just to make sure that I left enough room for them to tie into the paper and the lath when they come in to do the finish work.

The studs and conduit are properly wrapped in masking tape to shield them from the onslaught of stucco mud.

The studs and conduit are properly wrapped in masking tape to shield them from the onslaught of stucco mud.

 

Meter panel mounted in the final position. I tried to make the wall in back waterproof, yet easy for the stucco contractor to come in and finish around the panel.

Meter panel mounted in the final position. I tried to make the wall in back waterproof, yet easy for the stucco contractor to come in and finish around the panel.

Closeup of the sealer locknut. This is a great installation.

Closeup of the sealer locknut. This is a great installation.

 

Now the fun part — wiring! To me, this is a fairly straightforward task that is not particularly physically taxing, and you aren’t under any time pressure, like you are with masonry, and it’s pretty clean work (no mortar, sawdust, paint drips, water, etc.). My primary objective when doing wiring, other than meeting all specifications (e.g., wire sizes, connectors, strain reliefs, grounding) is NEATNESS. Especially in the main electrical panel. Wires should not just cris-cross all over the place, but be neatly run, vertically and horizontally, so it is possible to easily follow where each wire goes. As with all projects, a little forethought can go a long way, and in this instance, I figured out that I needed to route the ground wires first because I had to snake the wire coming in from the meter panel in back of the neutral bus on the breaker panel. I then had to connect just 3 more wires: two hot and one neutral. But these were BIG wires. Well, cables if you want to be more descriptive. For a 200 amp service, 2/0 copper is sufficient. There are some techniques for handling this size of cable, and I learned a lot from the Internet, as well as a great book by Rex Cauldwell called Wiring a House (Taunton Press, 2014). But basically, all you need is a utility knife, a pair of linesman pliers, a hacksaw and a crescent wrench (you use the hole in the handle for bending the cable).

Here are some pictures that show some of the electrical details.

Elements of a meter panel. Cables from the transformer at the street come up through the big conduit on the bottom. The two power lines hook up to the bottom of the meter, and the neutral cable hooks up to the neutral bar. The meter goes into the base on the left hand side, The two cables coming out of the top of the meter base go to the main panel breaker. Cables for power and neutral will come down and feed back into the house through the metal conduit on the right. Everything on the left hand side is the responsibility of the utility. Everything on the right hand side is all mine!

Elements of a meter panel. Cables from the transformer at the street come up through the big conduit on the bottom. The two power lines hook up to the bottom of the meter, and the neutral cable hooks up to the neutral bar. The meter goes into the base on the left hand side, The two cables coming out of the top of the meter base go to the main panel breaker. Cables for power and neutral will come down and feed back into the house through the metal conduit on the right. Everything on the left hand side is the responsibility of the utility. Everything on the right hand side is all mine!

 

Everything all wired up for action! The feeder breakers are installed back-to-back along the center so they make contact with one (for120v) or both (for 240v) of the hot legs. Outgoing wires for the branch circuits are routed in along the "gutters" adjacent to the hot legs. What is it about the trades and their terminology? Male and female fittings, nipples, studs, hot legs? Sheesh!

Everything all wired up for action! The feeder breakers are installed back-to-back along the center so they make contact with one (for120v) or both (for 240v) of the hot legs. Outgoing wires for the branch circuits are routed in along the “gutters” adjacent to the hot legs. What is it about the trades and their terminology? Male and female fittings, nipples, studs, hot legs? Sheesh!

And here is a video of me putting all of this together.

All done. Now it’s time for inspection!

Upon This Rock I Will Build My House

With demolition largely complete, it’s time to start building! Well, not quite so fast. Demolition being “largely complete” simply means that I’ve done as much as I could without actually opening up the house. This is an important distinction because once you open up the house, you have to work like hell to build it back up so that the varmints stay outside. Especially the ones who are walking by and see your expensive tools and want to take them.

My new pneumatic nail gun. The new tool for this project. I know, a REAL framing carpenter only uses a hammer, but nobody does that anymore these days.

My new pneumatic nail gun. The new tool for this project. I know, a REAL framing carpenter only uses a hammer, but nobody does that anymore these days.

At any rate, I was ready to build the portion of the garage that was directly under the new bedroom addition. Originally, I planned to keep the existing structure and simply reinforce it and put plywood panels on the outside to make new shear walls, and build a new deck overhead. But, alas, when I removed the drywall, I found that the framing around the garage door, commonly referred to as a “portal”, was not even close to the required specifications. So, I had to take down all the walls and start from scratch, building up from the foundation. It was probably just as well because the existing framing, although adequate, was lacking somewhat in craftsmanship and accuracy. Best to get a fresh start. But I had one “big” problem.

One of the hallmarks of this project is that I’m doing EVERYTHING myself. So, I typically have to give some thought about how I will handle materials without help. In most cases, I can rig up a “third hand” or find a way to wrestle this or that into place, and sometimes have to come up with a mechanical solution (e.g., ropes, pulleys, chains). In this particular case, I had to figure out how to lift a REALLY BIG BEAM into place. I’m talking 3-1/2 inches thick by 16 inches tall by 20 feet long. While contemplating this at work, I mentioned my conundrum to one of my co-workers, who happened to have some extensive remodeling experience himself. He said, “Let’s just get some folks together and muscle this thing into place. It won’t take but a few minutes, if everything goes right, but let’s plan on a few hours because I’m a believer in Mr. Murphy.” He was referring to Murphy’s Law: If anything can go wrong, it probably will. So, with some cajoling, I was able to enlist the help of another co-worker and my oldest son, and arranged for a Friday morning beam raising ceremony. I also got my plumber scheduled so he could re-do the water service entering the house. This was important because I had run the water line through the front and needed to have the line disconnected to get the shear wall in place.

Now the pressure was on! I took 3 days off from work, figuring that I could get the demolition done and the framing up to accept the beam during the first two days, and be all ready by the appointed time on Friday morning.

The front of the house sure looks different with the balcony removed.

The front of the house sure looks different with the balcony removed.

Day one, Wednesday: Let the demolition derby begin! The first thing to do was to remove the old balcony floor. It turned out that the subfloor was attached with screw nails and it was a real bitch to lever off the plywood, and of course, it took much longer than anticipated. I then had to disassemble the joists underneath. I found out that I could knock them sideways and they came right down. Then, I had to remove the stucco from the walls.  This is one dirty, tedious job that requires a lot of muscle work. Never mind that I had to take my 7″ grinder and precariously balance myself on top of a stepladder while getting all that dust in may face. Fortunately, I was smart enough to wear full goggles and a dust mask. Still, the goggles fog up and you end up getting covered with that crappy dust and end up looking like the Pillsbury Dough Boy. Needless to say, this took longer than anticipated (do you see a pattern developing?) and I had to stop before I could finish. Plus I was dead tired. I figured I could make up the time tomorrow. But first, I had to clean up and then install a big piece of black visqueen across the garage opening. I wanted to discourage random thievery and I figured that hiding everything would at least keep my valuable tools out of sight.

The stone that the builder rejected has become the chief stumbling block.

The stone that the builder rejected has become the chief stumbling block.

Day two, Thursday: Despite being exhausted from the day before, I had trouble sleeping because I was cramping up. That’s what happens when you hit your body hard with a bunch of exercise (as I know from my triathlete days). But woke up early because I knew I had to catch up. Went to Home Depot to get some pressure treated lumber for new sill plates because the existing ones looked like hell and I figured now would be the time to replace them. More unanticipated work. I still had one wall to knock down and some additional stucco to remove, but I couldn’t start because my lumber delivery came. It was one big load all strapped together, so the driver just slid it off the truck and onto the driveway. So, I had to move it all around in order to clear the driveway, but it was just as well because I re-stacked it in the order I needed to use it, which would hopefully save some time later. And it was getting later. By the time I had finished the remaining demo, and cleaned up, it was noon. Putting in the new sill plates took some time, but I figured that the wall framing would be pretty easy. I cut all of the lumber to the sizes I needed, but was only able to get one of the walls together and up before it got dark. And I was totally out of gas. Time to get some rest for the big day tomorrow! But first, I had to clean up and put that damned plastic back up.

Day three, Friday: I couldn’t sleep last night either because I knew I had to get that last wall up and I had folks coming at 7:30. Fortunately, I was able to get the wall framing assembled on the ground, and my son showed up to help me wrestle it in place. I was just finishing up when the rest of the crew arrived, and it was time to raise the beam! After a few minutes of strategizing, we all grabbed it and muscled it up there. I tacked it in place, but then Mr. Murphy showed his ugly head. I realized to my horror that I made the end walls 3″ too short! How could that be?? Well, like a dumb-ass I subtracted the double top plate, which I shouldn’t have done. Now we had to take out some nails, which was pretty damned difficult, and raise the beam enough to slip in a couple of 2×4’s underneath to get everything level. Unfortunately, we had to do this one side at a time, which meant that there were some small gaps at the ends because lifting up the beam on one end, even by 3″ threw it slightly out of level. In the end, I was only about 1/2″ off, but still you could see some gaps. Ultimately, gravity will settle things somewhat, but it was a little disappointing. Nevertheless, my plumber came and did his typically excellent installation, so I was able to get up most of the shear panels and ended the day with something that looked like a proper structure. After clean up and putting the plastic up (again) I could go in with a sense of satisfaction.

Day four, Saturday: Once again, I was working by myself. I got the rest of the shear panels up and then had to install some additional framing around the garage door opening so that I could re-install the garage door. I didn’t want to keep putting plastic sheeting up, plus I sure didn’t want to leave the house wide open when I went back to work on Monday. This took longer than expected because I decided to put some additional framing in to more easily locate the seismic hold-downs. I then had to attach a 20′ 2×12 to an existing beam that would support the joists of the bedroom addition floor. When I did the plans, I figured that what was existing (a built up beam of 3-2x12s) was good enough, but the plans examiner INSISTED that I put in another 2×12 and secure the whole assembly with a bunch of 1/2″ carriage bolts. At the time, I though it was overkill, but as I tried to marry up the new 2×12 to the existing structure, lo and behold, the existing beam was sagging. I mean by a very noticeable amount, like over an inch! So, I guess the plans examiner was right all along, and I now thank him for his advice. I wasted an hour trying to jack the existing beam up with what I had, but the more I thought about it, I figured the only way to straighten the whole thing out would be to replace it — a non-starter. So I did what a lot of remodelers end up doing, which is living with what you have and adapting. There will be a discontinuity when the new floor meets the old floor, especially in the center, but I’ll deal with that later. I also had to waste another hour or so cutting out the bottom of the aluminum framing around the sliding glass door.  The new lumber was hitting it and wouldn’t go flush to the existing built-up beam. As usual, time flew and by the end of the day, I only ended up getting the new 2×12 tacked up and in place. Still had to install all of those bolts.

New joist all bolted into place. See the gap between the bottom of the new joist and the bottom of the existing beam?

New joist all bolted into place. See the gap between the bottom of the new joist and the bottom of the existing beam?

Day five, Sunday: I really wanted this to be a day of rest, but I spent several hours after church re-installing the garage door. It was a little fussy, but I got it in and working. This was good because now the garage had some physical security and I felt OK locking it up and leaving it. All the tools were out of sight, and it would take some doing to climb up and around to get into the place. So much for the “big week”. At least I got stuff closed in a bit, which removed some of the pressure to meet deadlines. After all, this is supposed to be enjoyable, eh?

The garage door re-installed and my tools safe from random thievery.

The garage door re-installed and my tools safe from random thievery.

Here is a video of the whole thing:

Now my attention turned to installing hardware. Besides the bolts for the new 2×12, and joist hangers and hold-downs for the new joists, I had to figure out where to drill holes in the foundation to install threaded rods glued in with a special epoxy to meet new code requirements for seismic loads. I had a pretty good idea where most of them should go, but there was a tricky spot in the corners next to the garage door opening. Additionally, the special epoxy installation needed a “special” inspection, meaning that an inspector certified in this sort of thing had to inspect every hole for proper depth and cleanliness before you put the epoxy goop in. So I figured I would ask the inspector about the bolt location AHEAD OF TIME. Note my predilection for avoiding future trouble caused by me.

Proposed hole locations. I really didn't know how to do this correctly. At least I realized this ahead of time.

Proposed hole locations. I really didn’t know how to do this correctly. At least I realized this ahead of time.

I looked up special inspectors on Angie’s List, and while Angie’s List is usually pretty good, here I found nothing. So I searched on the Internet and found a guy whom I contacted. He was very cooperative, and since I did the design, I knew the requirements so I was able to give the impression that I knew what I was doing. I sent him a picture of the proposed hole locations, and he contacted a colleague who happened to be a registered Professional Engineer (PE) to get his advice. After some back-and-forth, I contacted the PE, whose name is Chris Pinnow (see link to his website) and arranged for a meeting. As the appointed time came closer, he was running late and suggested that he would come the following day (Saturday) AND he would bring a hammer drill and bit and offered to help drill the holes and knock off the entire job! It was pretty easy to say yes.

"My" engineer- Chris Pinnow. Really glad to have met this guy.

“My” engineer- Chris Pinnow. Really glad to have met this guy.

Sure enough, he shows up and we get to work, and in 4 hours I have all the holes I need, properly inspected with threaded rods properly secured with that special epoxy. Turns out that I had some misconceptions about what the hold downs were supposed to accomplish, and I’m really glad that Chris came and checked things out, because he made some crucial corrections to the installation. Here is the lesson: The days of framing a house with a stack of 2x4s, circular saw, and a big box of nails, are over. Today’s construction techniques are pretty sophisticated and if you’re doing something on the order of a remodeling job that involves structures, you’d better find a PE that can help you look at a few things should they come up. Their prices are usually very reasonable for professional services, and their advice is well worth it because you won’t have to do things over.

Final location of the holes, per my engineer.

Final location of the holes, per my engineer.

New hold down bolts all glued in place.

New hold down bolts all glued in place.

With that out of the way, it was time to build the deck over the garage, which serves as the structure for the floor of the bedroom addition. Ordinarily, this would be a relatively straightforward task, and if you were building totally new construction, it’s a day’s job, even if you’re solo. But with remodeling, usually nothing is so straightforward. That’s because the old stuff has most likely moved around a little bit due to settling. Plus, sometimes the carpenters who build the house may not be so fussy about accuracy, especially if they’re building a tract house and time is of the essence. So, things are not necessarily plumb or square, and you have to accommodate this when you meet up the new with the old. In my case, the built-up beam that supports the existing bedroom gable wall was not only sagging, as mentioned above, but was also bowed out and canted forward. That meant that I had to not only cut each joist to a different length to accommodate the bow, but also cut each at an angle so they would meet up correctly with the canted face. But, hey, it gives me a chance to exercise my craftsmanship skills.

Old meets new. Note the sag in the existing beam as compared to the new joist. Also note the location of the chalk line.

Old meets new. Note the sag in the existing beam as compared to the new joist. Also note the location of the chalk line.

Notice the difference in the position of the chalk line. This shows the bow in the existing beam.

Notice the difference in the position of the chalk line. This shows the bow in the existing beam.

My worksheet to keep track of what joist goes where.

My worksheet to keep track of what joist goes where.

I had to cut each joist at an angle to take into account the cant of the existing beam.

I had to cut each joist at an angle to take into account the cant of the existing beam.

All joists are up. Still have to add the rim joists.

All joists are up. Still have to add the rim joists.

Deck framing complete with rim joists installed.

Deck framing complete with rim joists installed.

Blocking detail. These are short blocks of wood that fit in between the joists. This not only gives the structure a lot of additional strength, but also squares up the joists nicely. Note the tight fit in the corners. Really looks nice!

Blocking detail. These are short blocks of wood that fit in between the joists. This not only gives the structure a lot of additional strength, but also squares up the joists nicely. Note the tight fit in the corners. Really looks nice!

Now with the framing in place, it was a simple matter to install the plywood on the frame to make a nice solid deck for the bedroom floor. I was a little concerned about fitting together the tongue-and-groove plywood together by myself, but I came up with a nifty way to do it. All you have to do is to get one corner started and then temporarily secure it with a deck screw to the joist below. Then you can coax the whole assembly together using the deck screw as a pivot. Here is a picture:

How to mate tongue and groove plywood by yourself.

How to mate tongue and groove plywood by yourself.

With the deck in place, it was time for an inspection. This was important because if I don’t have an inspection every 6 months, the city assumes that my project has been abandoned and they cancel my building permit. Because I can only work so fast, and I didn’t have a lot of inspectable items while I was working on the outside, AND I used up my one-time extension, this was a big deal. The inspector came and had some good words of advice, particularly when he pointed out that I had installed the washers on the hold-downs upside-down. How embarrassing!!

New hold down ready for inspection. Note the position of the U-shaped washer under the nut. I had a little surprise coming.

New hold down ready for inspection. Note the position of the U-shaped washer under the nut. I had a little surprise coming.

Hold down properly installed (!)

Hold down properly installed (!)

Nevertheless,  I got a couple of inspections signed off, so I punched my card for 6 more months. This whetted my appetite for the BIG buildout of the master bedroom, which is next!

New deck installed.

New deck installed.

The proud builder atop his masterpiece.

The proud builder atop his masterpiece.

Progress Inspection

Things are moving along well. In fact, I had a very productive day today and I’m going to do a first: two (2) blog posts in a single day! My inspiration was something called a “progress inspection”.

One of the requirements for maintaining a building permit is that you actually do some building. In the City of Chula Vista, you must have an inspection performed at least every 6 months to make sure that you just didn’t get a building permit, do some work, and abandon the project. At first, this had me worried because I could foresee occasions in my “planned” schedule where the time between formal inspections could easily exceed 6 months. This became especially concerning to me as the project advanced because I was coming to the realization the my projected timelines were hopelessly optimistic. I am optimistic to a fault. Just ask my wife. Fortunately, she thinks it’s an endearing fault. We all have our foibles. Equally fortunately, is the fact that the City of Chula Vista allows the “builder” to satisfy this requirement through what is called a “progress inspection”.

Basically, a progress inspection is an opportunity for the “building official” (i.e., the designated representative) to verify that your project is progressing. Therefore, there (theoretically) will be no abandoned projects without a resubmittal of the building permit. So I was going to be OK, provided that I showed some sort of proof that the project was advancing. Fortunately again, the City of Chula Vista is a relatively small municipality, and this allows the DIY’er to establish a somewhat personal relationship with the staff. What I found out was that the entire staff was very helpful and accommodating, providing that you had a clue. In addition, they have AWESOME inspectors who are more than willing to help a DIY kind of guy such as myself navigate the sometimes arcane and nuanced building codes. For example, the inspector who signed off on my electrical grounding system (see my previous post for details) had mentioned that I needed to make sure that the connections to the grounding rod were accessible after the concrete pour. This little bit of advice was extremely helpful because I had planned on just pouring the concrete over the whole shebang. Turns out that the inspector was the same guy who gave me the OK backfilling my water supply and site drainage. He was favorably impressed with my self-designed fire suppression system at the previous inspection,  and he remembered me. Hence that personal connection, and the personal advice to me about my electrical grounding installation as an informed DIY’er. He has my best interests at heart and wants me to succeed. How great is that?

Back to the progress “inspection”. I have done a lot of finish work and I’m getting ready for the big “concrete pour” which  I will subcontract out. I’ve put caps on my front yard retaining walls to give it a finished look, and I’ve cleared and excavated the front so it’s ready for putting in the gravel and setting up the forms for the concrete pour. Here are some pictures:

Right driveway apron ready for gravel backfill

Right driveway apron ready for gravel backfill

Left driveway apron ready for gravel backfill

Left driveway apron ready for gravel backfill

 

 

 

 

 

 

 

Front yard in the sunset

Front yard in the sunset

Front yard

Front yard

 

 

 

 

 

 

 

Front yard. Almost finished!

Front yard. Almost finished!

Will I EVER get rid of this dirt?

Will I EVER get rid of this dirt?

 

 

 

 

 

 

 

My First Electrical Work, But First I Build A Workbench — Now How Did THAT Happen?

As I’ve mentioned before several times on this blog, all major projects will take some unexpected turns. I had a good head of steam going with finishing the front yard, but, in the back of my mind, I had one piece of unfinished business. When the inspector came by back in December to OK the burial of services, we discussed the ground for the electrical system. He suggested that I check what kind of grounding system I already had in place, and I might be able to use it with no further work on my part. Well, to do that, I had to remove the drywall from the back of the main electrical panel, and to do that, I had to take off all of my tools from my pegboard and unload my workbench. So, because that was a big job, I kept putting it off. But now that I was getting ready to pour concrete, I had to get this resolved. I surely did not want to have to bust up newly poured concrete!

The first step was to unload and dismantle my workbench. It was kind of a POS to begin with because I used cheap prefab cabinets made of fiberboard. Maybe OK for a rental unit, but the cardboard drawer bottoms really didn’t hold up to heavy loads like tools and boxes of metal fasteners. So it was destined, at some point, to go. But what to put in its place? I mean, any self-respecting DIY’er needs a workbench! All kidding aside, your workbench is an essential tool, if for no other reason to lay out your work and materials. So, now I had to build a workbench. I wanted to get this done quickly, but the more I thought about it, I did not want to just build a “throw-away” bench. Was there a design out there that was relatively quick and easy to build, but would be something that I could keep and use for years to come? The short answer was yes. In fact, there were plenty of them. The Internet is chock full of designs, but also, because I use a 3D modeling program called SketchUp, there is a tremendous online presence which has a bunch of pre-designed models just waiting to be used. Turns out that woodworkers use SketchUp a lot, so I was in luck.

I found a really nice design by Tom Caspar of the American Woodworker magazine. This was a very functional workbench, made of common lumber you could get from a big box store, and it had a number of features of a traditional master carpenter’s bench, including a large face vise, a tail vise with provisions for bench dogs, and a tool tray. I added a couple of shelves and some retractable casters, and voila! A functional, inexpensive, and easy to make workbench. OK, well inexpensive is relative. I probably spent about $500 on materials if you include the vise hardware and casters, but I see these “works-of-art” workbenches made of hardwoods and fancy hardware that sell for $2,000. I’ve also known other woodworkers that pay that much for just the raw materials (good hardwood is expensive). Actually, I don’t understand why there would ever be a market for a pre-made master woodworker’s bench. If you have the woodworking skills and interest to actually use a bench like this, well, you would just make it, right? I mean, isn’t that what woodworking is all about? Unless you’re just a pretender. Some things will always remain a mystery to me.

Easy to make is also relative. I have a pretty well-appointed woodworking shop with a table saw, drill press, jointer, planer, bandsaw, lathe, and dust collection system (ShopSmith). (I really like my ShopSmith and have used it ever since I bought it back in 1990 — I think it’s a great solution for a complete workshop in a small space.) I also have a sliding compound miter saw that is mounted to a workstand (that I built). I also have a special jig for my circular saw that guides it accurately when cutting sheet goods — just like a panel saw. So, with all of these tools, and a number of years of experience, I found it to be relatively easy, and I put it together in a couple of weekends. Here are some pictures,

Picture of the plans

Picture of the plans

Finished Workbench With Tools

Finished Workbench With Tools

 

 

 

 

 

 

 

 

and a link to the PDF set of plans:  TOM’S TORSION BOX WORKBENCH REV 1.0

Finally, it was time to move all of the tools from the pegboard and empty the drawers. I was able to find some nice plastic storage tubs which fit very nicely on my shelves in my new workbench, so I was actually able to keep the garage fairly well-organized. I tore out and broke down the cabinets, pulled out the old shelving and pegboard, and prepared to demo the drywall. My first cut showed that there was no ground wire coming out of the bottom of the electrical panel. Not good. So I kept tearing down drywall until I found what looked like the grounding wire. It was a #4 aluminum wire (bad) that obviously was headed upstairs to the plumbing system (bad again). I was hoping to find a ground to the rebar of the foundation (also called a Ufer ground), but no luck. So, I had to go back to the codes to figure out my options. Here is what I found:

#4 Aluminum ground wire won't be enough to handle a 200A circuit. Plus, it's grounded to the plumbing system which is no longer allowed. So, I need a new grounding system.

#4 Aluminum ground wire won’t be enough to handle a 200A circuit. Plus, it’s grounded to the plumbing system which is no longer allowed. So, I need a new grounding system.

An example of the crappy electrical installation in my home.

An example of the crappy electrical installation in my home.

 

 

 

 

 

 

 

 

 

More code violations! If I can, I'm going to replace every wire in this house! Especially because they're aluminum.

More code violations! If I can, I’m going to replace every wire in this house! Especially because they’re aluminum.

 

 

 

 

 

 

 

Turns out that I had already done a lot of research. I knew that there was a possibility of not finding a good grounding system and that I would have to install a new one, so I started looking into what that would take several months ago. A residential electrical system needs a good, low impedance connection to the earth for several reasons. (1) The earth ground will help protect your house and all of your electrical/electronic devices by dissipating high voltages that could occur due to a lightning strike or an electrical surge on the electric grid. (2) The earth ground serves as a zero voltage reference to help keep voltages constant at your appliances and receptacles, and serves to dissipate stray charges caused by static electricity build-up. (3) The ground allows a return path from your electric service panel to the electric utility’s supply transformer to correct imbalances in your electrical system. (WARNING — TECHNICAL STUFF AHEAD!)

Your electrical system connects to the electric utility through a “transformer” which is a relatively simple device that, through the magic of Maxwell’s equations, takes high voltage (typically 7,500V) from the electric transmission lines, and converts it to lower voltage (240V) suitable for residential use. This transformer splits this voltage into two legs using a center tap on the secondary windings of the transformer as a common return line. Hence your electric panel has two voltages available: 240v across the ends of the transformer, and 120v taken from one end of the transformer to the center tap. This center tap is called the “neutral” and, in theory, if all loads on both sides of the transformer are balanced, the neutral current is essentially zero. However, that’s rarely the case as the various circuits in your home draw from either one or the other side of the neutral (center tap) and some times they’re on and sometimes they’re not. So there is ALWAYS some current flowing through the neutral, and the grounding of the neutral to earth allows a return path for these “stray” currents to go back to opposite winding of the transformer via the ground on the transformer side.

Well at least I think I understand it.

Back to installing the ground. Because of the dry conditions, the best ground you can get in the southwest United States is a Ufer ground, or more appropriately called a “concrete encased electrode”. It turns out that the rebar in your slab and foundation makes a pretty good ground to the earth because concrete is conductive and the large surface area exposed to the earth provides a good, low impedance connection. But that didn’t do me any good because I’m not pouring a foundation. Another option is to use the water supply system provided that it is conductive. Even though the code allows it, this can be problematic because (a) somebody can always come in and install a non-conductive fitting (e.g., PVC) and (b) my water supply line is covered by a protective plastic sleeve to help prevent corrosion, which makes it useless as a ground. So the best option was for me to use grounding rods.

Grounding rods are 8′ copper encased steel rods that are driven into the ground. Normally they are driven straight in, but if you have rocks in the way, this can be problematic. So, if you run into rocks, you can drive the rods at a 45° angle, and if you STILL run into rocks, you can bury the rod horizontally at a 30″ depth. So, I decided to go with a rod grounding system that consists of two, 8′ rods driven at least 6′ apart (2x length, or 16′ is best) and connected with a continuous #4 solid copper wire. From the Internet I learned that the best way to drive these rods was to pony up the bucks to rent the largest hammer drill you could carry and rent a special rod driving bit to go with it. This YouTube video showed somebody driving the rod in about 40 seconds, but I really didn’t think I would be that lucky. Nevertheless, I procured the necessary materials and tools and merrily went to work.

The first attempt was about like I expected. Although I was hopeful at first, the rod stopped about half way in, so I had to do some digging and, through some  imaginative extrication work involving a pipe wrench and swearing, get the damn thing back out. At least I learned how to climb up a stepladder cradling a 40# electric jack hammer and lifting it up to gingerly rest on the top of the rod and then balancing the whole affair and hammering it in without falling off the ladder and breaking my neck. With that bit of confidence under my belt, I relocated the rod and tried again. Same result. So now, I knew I had rocks about 4′ deep and the next step was to drive at a 45° angle. I extracted the rod using the same methods mentioned previously, except for double the swear words, and relocated the rod and tried again. This time it went in farther, but still stopped. So I decided to dig the 30″ trench and just bend the end in to fit. However as I started to dig, I found out that the trench was running into existing buried electric, phone, and cable services. So I had to stop and, once again, extract this stupid rod.  It just looked like it was shaping up to be this kind of project with multiple problems and no real end in sight. Not that I’m inexperienced in this situation.

So, I did some more measurements and figured out where the rods should go so as not to interfere with existing services and maintain a minimum of 6′ spacing regardless of whether I had to bend the rods over or not. With low expectations, I tried to drive the rod for the 4th time and, by God, it went in. Like a hot knife through butter! Just like the video. So I was lucky, and being never one to turn down a lucky streak, I tried again with the second ground rod. It was going in pretty good until about the last 18″, and at that point I was loathe to give up the fight. So I put some serious ass into that jack hammer and the rod started to move slowly. I kept with it until my fillings were about ready to fall out, but hey, I got it all driven in. No need to trench or remove the rod and try again. I was all done!

Well at least the hard work was done. I had to unwind the copper wire, secure it to the rods with acorn nuts, and then put the wire in a little bit of PVC conduit so it would be protected from damage from where it exited the grade to where it went into the house. Here are some visuals:

Getting ready to drive my ground rods. I wanted to drive 3, but I ran out of wire because of where I had to locate the first 2 rods. Only 2 are required per code.

Getting ready to drive my ground rods. I wanted to drive 3, but I ran out of wire because of where I had to locate the first 2 rods. Only 2 are required per code.

Ground rod driven at 45º with proper ground wire installed.

Ground rod driven at 45º with proper ground wire installed.

 

 

 

 

 

 

 

 

 

Grounding Electrode Conductor (GEC) must be one continuous wire. (Splices must be either welded or use approved specialty connectors.)

Grounding Electrode Conductor (GEC) must be one continuous wire. (Splices must be either welded or use approved specialty connectors.)

 

 

 

 

 

 

 

 

Now with the ground in place, I’m all set to finish shoveling and leveling the final grade and get some gravel in to get ready for the concrete pour. The inspector came in yesterday and took a look and said I was good to go! Now, onto the backfill and concrete pour! Good thing that I checked all of this out ahead of time!