It’s Electric!

While waiting for some more vacation time to accrue so that I could take a couple of weeks off and do the master bedroom buildout, I had a few weeks with nothing planned in particular. So last week, I decided to get some of my electrical work in. I’ve been researching this for some time and came to the conclusion that I would get the new service entrance panel and breaker panel all mounted and connected, and then I could call the city inspector. After passing that inspection, I could then contact the electric company (SDG&E) at my convenience and have the upgraded services connected at a time convenient for me. So I figured I could at least get the panel installation done.

The first thing was to order all of the parts. I had figured out most of this during the design phase of the remodel, so all I had to do was to re-familiarize myself with the work I already had completed, and then go back into the manufacturer’s catalog (I chose Eaton), get the part numbers, and then type them into the Home Depot website and put them on order for home delivery (that was free). 3 days and $1,000.00 later, I had all of my panels and breakers at the ready.

The next step was to open up the panels to see exactly how they were laid out so I could figure out what would go where, what knockouts I would use, what types of conduit and fittings I would need and what kind of wiring to get. I didn’t need a lot of wire because the panels are back-to-back, but it needed to be pretty hefty wire because it carries all of the house loads. One thing I had to figure out was how to lay out the grounding bus and neutral bus. If this means nothing to you, then you can (a) read my previous blog entry on grounding, (b) go to this website (http://www.wireyourownhouse.com) which does a pretty good job of explaining the terminology, or (c) skip ahead and forget the technical stuff. Since I like the technical stuff and it’s my blog, then I’m going to tell you all about it.

My brand-new meter panel. This is just like Christmas!

My brand-new meter panel. This is just like Christmas!

In most panels, the service (main) breaker and all of the feeder breakers are in the same enclosure. This arrangement allows you to install grounds and neutrals on the same bus. However, once you have a panel which is fed from another breaker (called a sub-panel), you now have to electrically separate the ground from the neutral. The reason for this is because if you have a unbalanced load running, such as a single 120v appliance, then there will be current running on the neutral, and if that neutral is grounded, it will be running through the grounding wire as well, which can be dangerous. It also can screw up the operation of your Ground Fault Circuit Interruption (GFCI) and Arc Fault Interruption (AFCI) breakers.

So, the way I have my panel wired up, with the main service breaker as part of the meter panel, I have to wire the panel with all of the circuit breakers as a sub-panel. Yes, it’s a little more complicated, but I wanted to be able to COMPLETELY de-energize the circuit breaker panel so I could work on it safely. All in one panels are NOT de-energized because you still have live voltage at the cables coming in from the meter into the top of your mains.

No big deal. All of these panels come with a neutral bus that can be separated by removing a jumper bar, and you can now have a separate neutral and ground bus. BUT, I had one problem. Nowadays almost EVERY breaker is going to have GFCI or AFCI protection. Out of the 21 circuits in my design, only 3 use conventional breakers. The GFCI and AFCI breakers have a “pigtail” which forms part of the sensing circuit and connects to the neutral bus. But I really couldn’t see trying to wire the panel with just one neutral bus without having pigtails on the opposite side making a complete mess and a wiring nightmare. If there is anything that I know about electrical work, it is that neatness counts. Big time. Yeah, you can get it to work if your wiring is a rat’s nest. but it will be difficult to work with later, especially if you have to troubleshoot or add a new circuit.  What I really needed was a neutral bus and grounding bus on each side of the panel so that I could have some flexibility in routing the wires.

Well, it turns out that the panel manufacturers make individual grounding busses that you can screw into holes in the panel that just so happen to match. So, I left the jumper between the existing ground and neutral busses and just didn’t connect them to ground, making them both neutral busses, and then installed two of the add-on grounding busses above and connected it all up with proper grounding wire.

Indoor distribution panel modified for neutral and grounding bars on each side.

Indoor distribution panel modified for neutral and grounding bars on each side.

With that problem solved, it was time to locate the panels and figure out how to attach them to the wall. I also had to make sure that it was vertically located to make it easy to work inside the panels, and met the utility company specifications for the height of the meter. The last part was to figure out how the wires would be routed so I could identify the correct “knockouts” to, well, knock out.

After some preliminary fitting, I temporarily attached the indoor breaker panel between the studs and marked the hole for the wires coming in from the meter. I then removed the panel, drilled the hole with a hole saw, and installed a short piece of threaded pipe, or conduit in electrician’s terms, so that the wires would be protected as they passed through the wall.

Closeup of the through-wall conduit, which is the silver pipe on the lower right. The yellow water seal is visible.

Closeup of the through-wall conduit, which is the silver pipe on the lower right. The yellow water seal is visible.

Turning my attention to the meter panel outside, now could locate it using the conduit coming from the inside as an anchor point. After some trial-and-error and trimming of the conduit coming up from the ground for the main power lines and ground wire, I marked the location of the mounting holes in the back of the panel and drilled holes for the mounting bolts. I chose to use carriage bolts for mounting the panel because (a) they would provide a good anchor to the plywood of the wall and (b) they could protrude enough so that I could get a layer of stucco on the plywood before I mounted the panel. More on that later.

Exterior studs and conduit aligned for the outer meter panel. Yes, the stud on the lower left looks a little out of line, but I needed to "adjust" it to make it fit.

Exterior studs and conduit aligned for the outer meter panel. Yes, the stud on the lower left looks a little out of line, but I needed to “adjust” it to make it fit.

Lastly, I needed to fit everything together to make sure it all worked. So, out with the inside panel (again) to install the bolts for the outside panel, replace the inside panel and fit the conduit into the hole in the wall, fiddle around with the outside meter panel to align it with the main power, ground, and thru-wall conduits, and finally fit the panel onto the mounting bolts. How does it look? Ugh! The damned thing was leaning over! But, never a project without some kind of do-over, and because I do a lot of this do-over stuff, I’m pretty good at it. One hour later, voilá! Nicely done.

Outside meter panel temporarily mounted., Want to make sure everything lines up before putting on the waterproofing building paper and stucco.

Outside meter panel temporarily mounted., Want to make sure everything lines up before putting on the waterproofing building paper and stucco.

Well, maybe that wasn’t the last step. I needed to make sure that the wall behind the outside panel was properly waterproofed, and if I installed it directly to the plywood, that would be impossible. The correct solution is courtesy of my favorite stucco guy, Kirk Giordano (http://www.youtube.com/user/StuccoPlastering). He showed a video of putting up stucco behind a new electrical panel with all of the proper waterproofing. In his instance, the panel was already located, but In my case, I could remove the panel to get better access. The key is to properly waterproof plywood with 2 layers of building paper, making sure that you flash and counter-flash around the conduit through the wall and the mounting bolts. Then, it’s time to do some stucco work! I really didn’t want to do a whole lot of it — just enough to make a nice surface in back of the panel. The professional stucco people that I plan on hiring will feather in around the panel and it will all look nice in the end. My job was just to make sure that I left enough room for them to tie into the paper and the lath when they come in to do the finish work.

The studs and conduit are properly wrapped in masking tape to shield them from the onslaught of stucco mud.

The studs and conduit are properly wrapped in masking tape to shield them from the onslaught of stucco mud.

 

Meter panel mounted in the final position. I tried to make the wall in back waterproof, yet easy for the stucco contractor to come in and finish around the panel.

Meter panel mounted in the final position. I tried to make the wall in back waterproof, yet easy for the stucco contractor to come in and finish around the panel.

Closeup of the sealer locknut. This is a great installation.

Closeup of the sealer locknut. This is a great installation.

 

Now the fun part — wiring! To me, this is a fairly straightforward task that is not particularly physically taxing, and you aren’t under any time pressure, like you are with masonry, and it’s pretty clean work (no mortar, sawdust, paint drips, water, etc.). My primary objective when doing wiring, other than meeting all specifications (e.g., wire sizes, connectors, strain reliefs, grounding) is NEATNESS. Especially in the main electrical panel. Wires should not just cris-cross all over the place, but be neatly run, vertically and horizontally, so it is possible to easily follow where each wire goes. As with all projects, a little forethought can go a long way, and in this instance, I figured out that I needed to route the ground wires first because I had to snake the wire coming in from the meter panel in back of the neutral bus on the breaker panel. I then had to connect just 3 more wires: two hot and one neutral. But these were BIG wires. Well, cables if you want to be more descriptive. For a 200 amp service, 2/0 copper is sufficient. There are some techniques for handling this size of cable, and I learned a lot from the Internet, as well as a great book by Rex Cauldwell called Wiring a House (Taunton Press, 2014). But basically, all you need is a utility knife, a pair of linesman pliers, a hacksaw and a crescent wrench (you use the hole in the handle for bending the cable).

Here are some pictures that show some of the electrical details.

Elements of a meter panel. Cables from the transformer at the street come up through the big conduit on the bottom. The two power lines hook up to the bottom of the meter, and the neutral cable hooks up to the neutral bar. The meter goes into the base on the left hand side, The two cables coming out of the top of the meter base go to the main panel breaker. Cables for power and neutral will come down and feed back into the house through the metal conduit on the right. Everything on the left hand side is the responsibility of the utility. Everything on the right hand side is all mine!

Elements of a meter panel. Cables from the transformer at the street come up through the big conduit on the bottom. The two power lines hook up to the bottom of the meter, and the neutral cable hooks up to the neutral bar. The meter goes into the base on the left hand side, The two cables coming out of the top of the meter base go to the main panel breaker. Cables for power and neutral will come down and feed back into the house through the metal conduit on the right. Everything on the left hand side is the responsibility of the utility. Everything on the right hand side is all mine!

 

Everything all wired up for action! The feeder breakers are installed back-to-back along the center so they make contact with one (for120v) or both (for 240v) of the hot legs. Outgoing wires for the branch circuits are routed in along the "gutters" adjacent to the hot legs. What is it about the trades and their terminology? Male and female fittings, nipples, studs, hot legs? Sheesh!

Everything all wired up for action! The feeder breakers are installed back-to-back along the center so they make contact with one (for120v) or both (for 240v) of the hot legs. Outgoing wires for the branch circuits are routed in along the “gutters” adjacent to the hot legs. What is it about the trades and their terminology? Male and female fittings, nipples, studs, hot legs? Sheesh!

And here is a video of me putting all of this together.

All done. Now it’s time for inspection!

My First Electrical Work, But First I Build A Workbench — Now How Did THAT Happen?

As I’ve mentioned before several times on this blog, all major projects will take some unexpected turns. I had a good head of steam going with finishing the front yard, but, in the back of my mind, I had one piece of unfinished business. When the inspector came by back in December to OK the burial of services, we discussed the ground for the electrical system. He suggested that I check what kind of grounding system I already had in place, and I might be able to use it with no further work on my part. Well, to do that, I had to remove the drywall from the back of the main electrical panel, and to do that, I had to take off all of my tools from my pegboard and unload my workbench. So, because that was a big job, I kept putting it off. But now that I was getting ready to pour concrete, I had to get this resolved. I surely did not want to have to bust up newly poured concrete!

The first step was to unload and dismantle my workbench. It was kind of a POS to begin with because I used cheap prefab cabinets made of fiberboard. Maybe OK for a rental unit, but the cardboard drawer bottoms really didn’t hold up to heavy loads like tools and boxes of metal fasteners. So it was destined, at some point, to go. But what to put in its place? I mean, any self-respecting DIY’er needs a workbench! All kidding aside, your workbench is an essential tool, if for no other reason to lay out your work and materials. So, now I had to build a workbench. I wanted to get this done quickly, but the more I thought about it, I did not want to just build a “throw-away” bench. Was there a design out there that was relatively quick and easy to build, but would be something that I could keep and use for years to come? The short answer was yes. In fact, there were plenty of them. The Internet is chock full of designs, but also, because I use a 3D modeling program called SketchUp, there is a tremendous online presence which has a bunch of pre-designed models just waiting to be used. Turns out that woodworkers use SketchUp a lot, so I was in luck.

I found a really nice design by Tom Caspar of the American Woodworker magazine. This was a very functional workbench, made of common lumber you could get from a big box store, and it had a number of features of a traditional master carpenter’s bench, including a large face vise, a tail vise with provisions for bench dogs, and a tool tray. I added a couple of shelves and some retractable casters, and voila! A functional, inexpensive, and easy to make workbench. OK, well inexpensive is relative. I probably spent about $500 on materials if you include the vise hardware and casters, but I see these “works-of-art” workbenches made of hardwoods and fancy hardware that sell for $2,000. I’ve also known other woodworkers that pay that much for just the raw materials (good hardwood is expensive). Actually, I don’t understand why there would ever be a market for a pre-made master woodworker’s bench. If you have the woodworking skills and interest to actually use a bench like this, well, you would just make it, right? I mean, isn’t that what woodworking is all about? Unless you’re just a pretender. Some things will always remain a mystery to me.

Easy to make is also relative. I have a pretty well-appointed woodworking shop with a table saw, drill press, jointer, planer, bandsaw, lathe, and dust collection system (ShopSmith). (I really like my ShopSmith and have used it ever since I bought it back in 1990 — I think it’s a great solution for a complete workshop in a small space.) I also have a sliding compound miter saw that is mounted to a workstand (that I built). I also have a special jig for my circular saw that guides it accurately when cutting sheet goods — just like a panel saw. So, with all of these tools, and a number of years of experience, I found it to be relatively easy, and I put it together in a couple of weekends. Here are some pictures,

Picture of the plans

Picture of the plans

Finished Workbench With Tools

Finished Workbench With Tools

 

 

 

 

 

 

 

 

and a link to the PDF set of plans:  TOM’S TORSION BOX WORKBENCH REV 1.0

Finally, it was time to move all of the tools from the pegboard and empty the drawers. I was able to find some nice plastic storage tubs which fit very nicely on my shelves in my new workbench, so I was actually able to keep the garage fairly well-organized. I tore out and broke down the cabinets, pulled out the old shelving and pegboard, and prepared to demo the drywall. My first cut showed that there was no ground wire coming out of the bottom of the electrical panel. Not good. So I kept tearing down drywall until I found what looked like the grounding wire. It was a #4 aluminum wire (bad) that obviously was headed upstairs to the plumbing system (bad again). I was hoping to find a ground to the rebar of the foundation (also called a Ufer ground), but no luck. So, I had to go back to the codes to figure out my options. Here is what I found:

#4 Aluminum ground wire won't be enough to handle a 200A circuit. Plus, it's grounded to the plumbing system which is no longer allowed. So, I need a new grounding system.

#4 Aluminum ground wire won’t be enough to handle a 200A circuit. Plus, it’s grounded to the plumbing system which is no longer allowed. So, I need a new grounding system.

An example of the crappy electrical installation in my home.

An example of the crappy electrical installation in my home.

 

 

 

 

 

 

 

 

 

More code violations! If I can, I'm going to replace every wire in this house! Especially because they're aluminum.

More code violations! If I can, I’m going to replace every wire in this house! Especially because they’re aluminum.

 

 

 

 

 

 

 

Turns out that I had already done a lot of research. I knew that there was a possibility of not finding a good grounding system and that I would have to install a new one, so I started looking into what that would take several months ago. A residential electrical system needs a good, low impedance connection to the earth for several reasons. (1) The earth ground will help protect your house and all of your electrical/electronic devices by dissipating high voltages that could occur due to a lightning strike or an electrical surge on the electric grid. (2) The earth ground serves as a zero voltage reference to help keep voltages constant at your appliances and receptacles, and serves to dissipate stray charges caused by static electricity build-up. (3) The ground allows a return path from your electric service panel to the electric utility’s supply transformer to correct imbalances in your electrical system. (WARNING — TECHNICAL STUFF AHEAD!)

Your electrical system connects to the electric utility through a “transformer” which is a relatively simple device that, through the magic of Maxwell’s equations, takes high voltage (typically 7,500V) from the electric transmission lines, and converts it to lower voltage (240V) suitable for residential use. This transformer splits this voltage into two legs using a center tap on the secondary windings of the transformer as a common return line. Hence your electric panel has two voltages available: 240v across the ends of the transformer, and 120v taken from one end of the transformer to the center tap. This center tap is called the “neutral” and, in theory, if all loads on both sides of the transformer are balanced, the neutral current is essentially zero. However, that’s rarely the case as the various circuits in your home draw from either one or the other side of the neutral (center tap) and some times they’re on and sometimes they’re not. So there is ALWAYS some current flowing through the neutral, and the grounding of the neutral to earth allows a return path for these “stray” currents to go back to opposite winding of the transformer via the ground on the transformer side.

Well at least I think I understand it.

Back to installing the ground. Because of the dry conditions, the best ground you can get in the southwest United States is a Ufer ground, or more appropriately called a “concrete encased electrode”. It turns out that the rebar in your slab and foundation makes a pretty good ground to the earth because concrete is conductive and the large surface area exposed to the earth provides a good, low impedance connection. But that didn’t do me any good because I’m not pouring a foundation. Another option is to use the water supply system provided that it is conductive. Even though the code allows it, this can be problematic because (a) somebody can always come in and install a non-conductive fitting (e.g., PVC) and (b) my water supply line is covered by a protective plastic sleeve to help prevent corrosion, which makes it useless as a ground. So the best option was for me to use grounding rods.

Grounding rods are 8′ copper encased steel rods that are driven into the ground. Normally they are driven straight in, but if you have rocks in the way, this can be problematic. So, if you run into rocks, you can drive the rods at a 45° angle, and if you STILL run into rocks, you can bury the rod horizontally at a 30″ depth. So, I decided to go with a rod grounding system that consists of two, 8′ rods driven at least 6′ apart (2x length, or 16′ is best) and connected with a continuous #4 solid copper wire. From the Internet I learned that the best way to drive these rods was to pony up the bucks to rent the largest hammer drill you could carry and rent a special rod driving bit to go with it. This YouTube video showed somebody driving the rod in about 40 seconds, but I really didn’t think I would be that lucky. Nevertheless, I procured the necessary materials and tools and merrily went to work.

The first attempt was about like I expected. Although I was hopeful at first, the rod stopped about half way in, so I had to do some digging and, through some  imaginative extrication work involving a pipe wrench and swearing, get the damn thing back out. At least I learned how to climb up a stepladder cradling a 40# electric jack hammer and lifting it up to gingerly rest on the top of the rod and then balancing the whole affair and hammering it in without falling off the ladder and breaking my neck. With that bit of confidence under my belt, I relocated the rod and tried again. Same result. So now, I knew I had rocks about 4′ deep and the next step was to drive at a 45° angle. I extracted the rod using the same methods mentioned previously, except for double the swear words, and relocated the rod and tried again. This time it went in farther, but still stopped. So I decided to dig the 30″ trench and just bend the end in to fit. However as I started to dig, I found out that the trench was running into existing buried electric, phone, and cable services. So I had to stop and, once again, extract this stupid rod.  It just looked like it was shaping up to be this kind of project with multiple problems and no real end in sight. Not that I’m inexperienced in this situation.

So, I did some more measurements and figured out where the rods should go so as not to interfere with existing services and maintain a minimum of 6′ spacing regardless of whether I had to bend the rods over or not. With low expectations, I tried to drive the rod for the 4th time and, by God, it went in. Like a hot knife through butter! Just like the video. So I was lucky, and being never one to turn down a lucky streak, I tried again with the second ground rod. It was going in pretty good until about the last 18″, and at that point I was loathe to give up the fight. So I put some serious ass into that jack hammer and the rod started to move slowly. I kept with it until my fillings were about ready to fall out, but hey, I got it all driven in. No need to trench or remove the rod and try again. I was all done!

Well at least the hard work was done. I had to unwind the copper wire, secure it to the rods with acorn nuts, and then put the wire in a little bit of PVC conduit so it would be protected from damage from where it exited the grade to where it went into the house. Here are some visuals:

Getting ready to drive my ground rods. I wanted to drive 3, but I ran out of wire because of where I had to locate the first 2 rods. Only 2 are required per code.

Getting ready to drive my ground rods. I wanted to drive 3, but I ran out of wire because of where I had to locate the first 2 rods. Only 2 are required per code.

Ground rod driven at 45º with proper ground wire installed.

Ground rod driven at 45º with proper ground wire installed.

 

 

 

 

 

 

 

 

 

Grounding Electrode Conductor (GEC) must be one continuous wire. (Splices must be either welded or use approved specialty connectors.)

Grounding Electrode Conductor (GEC) must be one continuous wire. (Splices must be either welded or use approved specialty connectors.)

 

 

 

 

 

 

 

 

Now with the ground in place, I’m all set to finish shoveling and leveling the final grade and get some gravel in to get ready for the concrete pour. The inspector came in yesterday and took a look and said I was good to go! Now, onto the backfill and concrete pour! Good thing that I checked all of this out ahead of time!

Happy New Year! Reflecting on 2014 and Looking Forward to 2015

The turn of the year is always a good time to reflect on the past year and look forward to the next. It’s a common demarcation point, and it occurs when we’re collectively given the time to reflect and plan, according to our nature. I know what you’re saying” “If you’re in retail, or emergency services, or in the military on deployment, the maybe I’m not given the time.” However, I think because of the time of year, everybody is doing it, and you can’t help yourself. Actually, serving your customers, community, or country can have special meaning at this time of year.

OK, well maybe not so much in retail.  As they say, anybody who says there are “No stupid questions!” has NEVER worked in customer service. You know, retail is a dang hard job, and I truly appreciate everybody who helps me when I’m shopping.With a smile and a kind word, you will always get superior customer service! All you have to do is to distinguish yourself from the a**hole who decided to take out their frustrations on some poor, underpaid retail associate who is constantly bombarded by yet another a**hole! But you have to remember to take the time to take the survey and say nice things. If you REALLY want to reward good customer service, then have the presence of mind to remember the name of the person who helped you, and then take the time to make a positive comment  on the survey, or the website. These people get promotions and monetary rewards for this kind of stuff. So, the lesson is: Be nice, and when you get good service, make sure you tell the boss!

Where was I?

Reflections on 2014: I had been planning my remodel since 2012, when my lovely wife and I started discussing concepts and the things that we really wanted out of  life, and how our home would reflect that. At the beginning of 2014, I had finished detailed planning and had drawings that I thought were good enough to submit to the city building department for approval. 8 months later, after 3 revisions, I finally got the building permit! Actually, I didn’t wait to get the building permit do start work. I knew that I needed to take out my patio in back, and I wanted to save the bricks and sand. That was a major undertaking which filled the dead time in between the review of the latest plan revision, and answering the comments for the next plan revision. Once I got the building permit, I started in earnest, with site demolition, excavation, and installation of underground services.

What I learned:

  1. If you don’t follow the prescribed approach in the codes, then you will have to have a licensed engineer sign off on your plans. For a small job, it’s not worth it (and they were kind enough to tell me that). Learn the codes and follow the prescriptive approach.
  2. Take each “rejection” as an opportunity to improve your design. I can say that my plans have been significantly improved by having reworked them for the building department.
  3. Detailed planning helps you build faster. My plans have speeded up my work (thus far) in ways that I could not have imagined before.
  4. Detailed planning does not account for everything. Inevitably, you run into unexpected obstacles. The fittings don’t fit like you expected. You need to change the routing of the conduit to account for other buried services. Remain flexible and adapt. “No battle plan survives first contact with the enemy.” (Field Marshal Helmuth von Moltke.)
  5. Know when to quit for the day. Something my dad taught me.  This is a big project and you have to know your limits. If you push too hard, then quality suffers. It’s OK to have goals, but sometimes (OK , frequently), the goals are too optimistic. There are only so many hours in the day, and you need to take care of yourself. So know when to quit for the day, and make sure that you leave enough time for clean up!

Goals for 2105:

  1. Don’t get injured. Building can be dangerous if you’re not careful!
  2. Keep my job. Don’t get too involved in the remodeling at the expense of the day job. Yes, I still have to pay for all of this somehow.
  3. Go to Smithfield, VA for my  wife’s 50th high school reunion.
  4. Finish the site work. I’m optimistic this will be done by March. But who knows?
  5. Move out of the master bedroom, and do the demo.
  6. Build the addition and close in. I’m hoping by July-August. Before the rains come in any case.
  7. Install A/C. That will be contracted out.
  8. Install a new roof. Also contracted out.
  9. Re-stucco the front. Yet more contract work.
  10. Paint the house. Did I mention contract work?
  11. Install new electrical service. This will be all me. Wish me luck!
  12. Don’t take the remodeling too seriously. Yes, it’s important to have goals and to work hard to achieve them, but in the end, this is supposed to be rewarding and it’s important to take pride in one’s accomplishments. Otherwise, I’d be hiring somebody to do all of this!

I wish all of you a very happy New Year, and I hope that you continue to follow my blog. I’m working on an epic post for digging ditches!  Stay tuned……

Electrical Design

As with any other design, electrical design begins with your requirements. Lighting requirements, which I discussed in a previous post, will dictate the locations and types of switches and circuits. But one also must consider the other electrical needs of the house. This includes electrical outlets,  appliances, HVAC (Heating, Ventilation, and Air Conditioning), and specialty circuits such as an electric car charger or a stair elevator. When considering the electrical requirements of my remodel, I also wanted some room for future expansion to take care of needs that aren’t yet specified. In an older home, this typically means that you’ll have to upgrade the service going into the house. More on that in a bit. Here is the list of requirements that I came up with for my remodel.

  1. Significantly expanded permanent lighting to be controlled with switches from convenient places.
  2. Additional outlets for the den (entertainment center) and kitchen.
  3. Dual electric car chargers.
  4. Air conditioning system.
  5. Additional outlets in garage to support a smart home wiring closet

Now at this point of the design, we start to get on thin ice when it comes to a DIY job. You will have to start making design decisions and tradeoffs which are going to be influenced by code requirements, and unless you have some background and experience with electrical design and code requirements, it might be a good idea to enlist the help of a professional. In my case, I have an engineering degree, so I have a good handle on basic electrical design and circuits. In addition, I have several years of experience from the Navy as an electrical officer and engineer officer, so I have a lot of practical experience with electrical systems including power generation, distribution, control, and most importantly: SAFETY!! This is why I caution anybody who does NOT have experience with electrical systems to get professional help sooner rather than later. Electricity can kill you and can burn your house down, so you’d better be sure you know what you’re doing. With this in mind, I started with a focused study of the California Electrical Code, which is basically a reprint of the National Electrical Code (NEC). There are also a lot of “how-to’s” on the Internet, and there are a lot of forums where you can pick up some good tips that help demystify the arcane language of the NEC. One site, which is particularly geared to the DIY enthusiast, is Wire Your Own House. The guy who writes this is a professional electrician, and his website is chock full of good information. Turns out that there are a lot of professional tradespersons who freely share their techniques and knowledge. If you really want an education on how to do things like a professional, YouTube is a great resource. Consider it your apprenticeship program! Now, armed with knowledge, I was ready for the next step. As in every other remodeling project, the first place to start is figuring out what you’ve got. So I went to my service panel and methodically turned off one circuit after another and with multimeter in hand, recorded every switch, receptacle, and appliance, and matched all of those to my the individual breakers in the service panel. Needless to say, I found some problems.

  1. The service panel was woefully inadequate for what I had planned. It was a 100A service and it was maxed out. I knew I needed more than that. Wasn’t sure how much yet because I hadn’t completed the design, but I knew there was no room for expansion.
  2. Some circuits were not per code. I had a massive amount of lights and receptacles on one circuit, and it looked like it was messed with by the previous owner of the house. My adding some “extensions” to the circuit didn’t help much.
  3. I didn’t know what I was doing. What did I say before? If you’re not in the business then be VERY CAREFUL. Turns out that I made several code mistakes, like powering kitchen lights with dedicated small appliance circuits (a no-no) and extending lighting circuits with junction boxes buried under drywall (safety hazard — and not per code). However now that I know the code better, I’m going to right these wrongs. Plus, my design has to get approved by the building department, so they will provide an independent check. PLUS — I’m going to hire a consultant to check any work I end up doing myself. I may be smart, but I don’t know everything, and an independent look is well worth it.

Sidebar: a couple of months after I accomplished the “as installed” conditions, I had an electrical fire. No kidding! The dryer breaker fried. So I pulled apart the dryer to make sure that the heating element was OK, and it was fine. I then went back into the distribution panel, and lo and behold, the 240V wiring from the dryer in the panel had shorted out. You know, the one with the red insulation on it? Upon further inspection, I found out that there were knife cuts in the insulation, probably from stripping the outer plastic sheathing on the Romex during the original assembly. So, I put some heat shrink on the offending conductors, and clipped the blasted out wire so that I had a good solid wire to work with, and put in a new dryer breaker, the original one being a slag heap. Moral of the story: Even the professionals get it wrong on occasion! If I needed another reason to get a new distribution panel, this was a good one.

Now that I had the “as installed” configuration, I could start to work on the remodel. I went back to my design requirements and placed all of the lights, receptacles, and switches where I wanted them on the plan, and then mapped those to the existing circuits, making new circuits where necessary. Also, to be code compliant, I had to consider not only the numbers and types of circuits, but also which ones were Ground Fault Circuit Interruption (GFCI), but also Arc Fault Circuit Interruption (AFCI). AFCI is used to help prevent fires by detecting the spark (arc fault) that occurs between two conductors that short out (such as with a faulty lamp cord). Those are required in living areas such as living rooms, dens, and bedrooms. Basically, if you want to be up to code, you’re either going to have a GFCI or an AFCI breaker in your distribution panel. Not so many “standard” breakers anymore! Lastly, now that the circuit design was done, I had to calculate the loads to figure out what service I needed. The code can be pretty arcane when it comes to figuring out what you really need. Fortunately, there are some great resources on the Internet, the best one was from a website (“Electrical Knowhow“) where you can find a handy-dandy spreadsheet(ResidentialLoadCalculations) where you put in your numbers and it figures out what you need based on the code. BUT…you REALLY need to understand what goes into that spreadsheet and why it produces the numbers that it does! I referred back to the code at every step to make sure that I was putting in the correct numbers and that the results were code compliant. To sum up my diatribe on electrical design, allow me to leave you with these thoughts:

  1. Approach the design with the same top-down method that all designers use. Start with your requirements and work down, making sure that the design meets those requirements as you get increasingly detailed.
  2. Use the DIY approach to detail the design within the limits of your knowledge and experience. It’s OK to stretch a bit as long as you’re willing to invest the time and effort to self-educate. Even if you never get to the point where you finish the design, or do any of the work, the time you spend in learning the details will pay off when you hire a professional.
  3. Have humility. Don’t pretend to know-it-all and, if you’re doing this as DIY all the way, at least have the common sense to hire a consultant to check your work. The stakes are too high.
Electrical Plan_1

ELECTRICAL DESIGN FIRST FLOOR

Electrical Plan_2

ELECTRICAL DESIGN SECOND FLOOR

Here is my final electrical design.