California Sleepin’ — Finishing up the Porch Roof and Getting Ready For Roofing And Stucco

Alas, even though I had been working hard on getting the framing and roofing done, I still had to build the roof system over the porch. This was going to be some more fancy carpentry than what I did in the past because I had to put together a new roof structure and stitch it up to the existing roof structure. I did much of the work during the design phase, so my plans were pretty detailed. But, before I could proceed, I needed to build a proper structure to support the roof and the associated framing.

The first thing that I had to do was to replace the old beam and column which held up the balcony with a new structure. The old one was falling apart, and most of the construction was more of this slipshod crap from the original builder. I try to replace as much of this crappy work as possible without tearing down the whole house! This, however, was a no-brainer, and not very difficult when compared to building the main addition. I started with a bare foundation, then drilled holes and put in new anchor bolts secured with epoxy. I learned the proper way to do it when I did the seismic retrofit in the garage. Next was some simple vertical framing for the column proper. The main thing I had to consider was how to protect the top of the column from weather. I put in two sheets of building paper with some flashing on top, and made sure to have about 3-4 inches of overhang so that the stucco folks could tie it in when they did the lath.

New hold down bolts properly held in with epoxy.

New hold down bolts properly held in with epoxy.

Close up of the porch column with building paper (2 layers) and flashing installed. The stucco people will like me for this.

Close up of the porch column with building paper (2 layers) and flashing installed. The stucco people will like me for this.

I also had to tear into the wall of the house to get to the old beam and remove it. Good thing I did because the wall support for the old beam was totally inadequate. I replaced it with a proper 4×4 and fastened everything together with SDS wood screws. That baby ain’t coming apart!

New in-wall support column for the porch beam. The other one was a crappy little 2x4 that was all bent. Note the SDS screws which secure the beam the the wall structure.

New in-wall support column for the porch beam. The other one was a crappy little 2×4 that was all bent. Note the SDS screws which secure the beam the the wall structure. “SDS” stands for “Strong Drive Screw”, which is a proprietary name for these screws made by Simpson Strong Tie.

New column and beam for the porch roof. The old assembly was falling apart and the support column in the wall behind was just lousy, sloppy construction.

New column and beam for the porch roof. The old assembly was falling apart and the support column in the wall behind was just lousy, sloppy construction.

The next thing to do was to lay out the roof structure. Roof structures are made with either trusses, which I had to use over the master bedroom, or simple framing lumber put together one piece at a time. This is called “stick” framing when you’re doing it for a roof. Before I get too far into how I did this, I think it’s helpful to be familiar with some of the terminology. As with walls, each structural member has a name. The board going across the top is called the “ridge”. This is supported at each end by walls called “gables”, if they are straight up and down, or “hips” if the roof slopes at the ends, as well as the sides. The framing of the roof from the ridge board to the top of the walls is called a “rafter”, and the lumber going from the top of each wall across is called a “joist rafter”. For more complex roofs, you have “hip rafters” which are at the edges of hip roofs, “valley rafters” where a one roof line intersects another forming, well, a valley, and “jack rafters” which are the short rafters going between the hip rafter and the top of the wall, or the valley rafter and the ridge. Here is a picture to help sort things out.

Basic diagram for roof framing. There are all kinds of references and resources on the Internet.

Basic diagram for roof framing. There are all kinds of references and resources on the Internet.

My porch roof was a little different (naturally). The roof is only “half roof” that starts halfway up the second story wall and slopes down over the porch, so the ridge board becomes a “ledger” board. And, instead of intersecting the main roof with a valley, I have to put down lumber on top of the main roof. I came up with this idea by myself during the design phase, but little did know that my situation was not unique. In fact, I found that the proper terminology for this piece of lumber is called a “sleeper”, and because this happens a lot in California (God only knows why), it’s called a “California sleeper” — hence the title of this post.

This shows the structure detail of the porch roof.

This shows the structure detail of the porch roof.

Now that I actually had to start cutting lumber, I was faced with the conundrum of figuring all of those pesky things like lengths, miter angles, and bevel angles. I also knew from past experience that little errors are magnified when you start cutting angles. I did some research on the Internet and I found a REALLY GOOD roof framing website by a master carpenter named Sim Ayers who had a blog entry on EXACTLY what I was trying to accomplish. So I read with enthusiasm and discovered that calculating these lengths and angles directly from trigonometry was pretty tedious. While there are some handy-dandy roof calculators out there, I decided that I already have a “calculator” in with my 3D modeling program. Since I wanted to be as accurate as possible, I used some direct measurements, which are always good when you’re working with existing structures, and then fed them into a simple 3D model and took off the necessary lengths and angles (bevels and miters) from there.

3D model of the porch roof where it joins the main roof. I only took 3 orthogonal measurements (as shown) and constructed the rest of the model from there using the known dimensions of the lumber and the rafter spacing (16

3D model of the porch roof where it joins the main roof. I only took 3 orthogonal measurements (as shown) and constructed the rest of the model from there using the known dimensions of the lumber and the rafter spacing (16″ o.c.).

Close-up of the

Close-up of the “sleeper” rafter and how I measured the cut angles. The 3D modeling program gives me the exact angles.

I know this isn’t a really useful “how to” unless you have a 3D modeling program, which I highly recommend anyway, but really, if this is something you’d like to know more about, then visit Sim’s website (link above). Here is the link for his blog post on Off Angle California Framing.

Picture of a

Picture of a “pro” roofing job (by Sim Ayers) using a California sleeper.

My DIY version. That was some pretty fancy carpentry!

My DIY version. That was some pretty fancy carpentry!

Once I had the rafters and trim in place, I needed to get the roof on. I decided to use shiplap on the entire roof because the underside would be exposed and I wanted a nice look.

Underside of the porch roof matches the shiplap of the eaves.

Underside of the porch roof matches the shiplap of the eaves.

Front wall extends up to the last common rafter. Note the small space between the main roof, the adjacent wall, and the porch roof. This will be totally closed off when complete. Maybe I'll cut a small hole in the bedroom wall and use this as a

Front wall extends up to the last common rafter. Note the small space between the main roof, the adjacent wall, and the porch roof. This will be totally closed off when complete. Maybe I’ll cut a small hole in the bedroom wall and use this as a “secret compartment”.

I always sign my work. This area is going to be covered with plywood and stucco. I wanted people 2000 years from now to uncover my hieroglyphics during an archeological dig and argue for decades about what this find meant.

I always sign my work. This area is going to be covered with plywood and stucco. I wanted people 2000 years from now to uncover my hieroglyphics during an archeological dig and argue for decades about what this find meant.

Now, before I got the windows installed, I wanted to load the bedroom with any additional drywall and lumber that I might need because I sure didn’t want to haul it up the stairs! Fortunately, I could rent something called a “material lift” which makes it possible.

Drywall and lumber ready for loading up into the master bedroom. I wanted to get this loaded before I had the windows put in,

Drywall and lumber ready for loading up into the master bedroom. I wanted to get this loaded before I had the windows put in,

I rented a material lift to get all of the plywood and drywall up to the second floor.

I rented a material lift to get all of the plywood and drywall up to the second floor.

Unfortunately, I had some “learning” to do when it came time to actually use it as the following video shows.

Despite my failings, I was able to get the materials loaded and the windows installed.

Drywall and interior lumber loaded into the master bedroom. That was a LOT of WORK!

Drywall and interior lumber loaded into the master bedroom. That was a LOT of WORK!

All buttoned up and ready for the lath folks.,

All buttoned up and ready for the lath folks.,

Building a Catio — Learning To Love Cats and Keeping Them Happy

Let’s face it: I’m a dedicated cat lover. I didn’t used to be, but when I was first dating my yet to be wife, she had mentioned that she liked cats and had many a fond memory of them. My tiny little pea-brain thought: “Well, wouldn’t it be nice to get her a cat because she likes them so much.”  She did like the cat, but it came with the newfound responsibility of being a “cat-daddy”. It was all good, though. She showed me how to relate to them, and that they were very affectionate, but their life was lived on their terms, and after a fashion, I came to respect that. Since then, we’ve had many a cat, and I now believe that those who don’t like cats, don’t know cats.

Cats have always come into our lives either through the local shelter, or have just shown up. We never pass up the opportunity to attract a stray and needy cat, and, if it is not obvious that the stray is neutered, we get it to the vet (trapping it with a live trap if necessary) and take care of that little piece of business.  We started with the one cat way back when, but as Earnest Hemingway says: “One cat just leads to another.” so we’re at four (at the moment).

A couple of things that cats need are (a) territory they can claim and (b) places for their territory that are interesting to them where they can perch, play, sleep, and watch. For indoor cats, this can present a challenge, especially if you have more than one cat. The answer is to “catify” your house. There are lots of good ideas out on the Internet about “catification”, and these primarily emphasize making use of vertical spaces, such as shelving, steps, climbing posts, and perches that allow the cats to move around and find more space. However, all cats like to be outdoors. The conundrum is that outdoors can be dangerous to cats because they can become prey to other animals (like coyotes) and can become injured by other cats, cars, and mean people. But, what if you were able to put them in a big cage? And what if that cage shared a wall with your home so that they could have a private “kitty door” they could use at their whim? And what if you made that cage big enough for people to have a couple of nice outdoor chairs and a small table so you could enjoy the outdoors with the company of your cats? Say hello to the “catio”.

A catio is a patio that has been modified to accommodate the needs of cats that keeps them safe while they enjoy the pleasures of the outdoors. Some are very small — basically a shelf extending from a window with a cage around it. Very popular in cities. But for a home that already has a patio with a patio cover, as it is in my case, it is a simple matter to add some rudimentary framing, a couple of doors (one cat, one human), and some wire mesh, to have a nicely defined outdoor space that can be enjoyed by the whole family. Yes, cats are part of the family. But, to really bring it up to proper “cat standards”, one needs to add some cat specific architectural details that give the cats places to hide, peek, perch, watch, climb, run around, and sleep. These don’t necessarily have to be complicated, so I decided to have some fun in designing the interior of the catio to provide the cats interesting and fun things for them to do, while still maintaining a sense of style. Here are some pictures of the design.

Here is a rendering of the catio with the cat "toys". There are numerous features that are attractive to cats, such as vertical interest, views outside, places to run, hide, and peek, and places to climb and scratch.

Here is a rendering of the catio with the cat “toys”. There are numerous features that are attractive to cats, such as vertical interest, views outside, places to run, hide, and peek, and places to climb and scratch.

The actual building of the structure is pretty simple. I used basic 2x dimensional lumber for framing everything out, and decided to use deck screws to put everything together. Because none of this is load bearing, and was built against the existing framework of the patio cover roof and posts, I didn’t need a permit. Having said that, I did use my SketchUp modeling program to do a detailed design because (a) it helps me visualize the final product, (b) helps me figure out how I’m going to build it, (c) helps me with the material estimates.  I put some effort into the door because it has to be sturdier than a typical screen door, and if you’re using dimensional lumber that is pressure treated, it probably won’t stay square because it is sold as green (wet) lumber and will warp when it dries. I found out this the hard way with my first attempt at a catio. This time around I used kiln dried 2×6 lumber for the door and joined it with mortise and tenons, held together with waterproof glue and dowels. Here are some pictures of the final design.

Catio Framing

Catio Framing

Catio Toys

Catio Toys

Detail views of the construction.

Detail views of the construction.

And of the construction.

The "before" picture. All tools in place and materials staged (on the left). Time to start framing!

The “before” picture. All tools in place and materials staged (on the left). Time to start framing!

The framing is done! I paid particular attention to the frame for the door, making sure that it was square and plumb.

The framing is done! I paid particular attention to the frame for the door, making sure that it was square and plumb.

Framing is spaced at 36" to fit the 36" wide roll of wire mesh (with overlap). This minimizes the time cutting the mesh.

Framing is spaced at 36″ to fit the 36″ wide roll of wire mesh (with overlap). This minimizes the time cutting the mesh.

After the framing was up, I installed all of the “cat toys” and the door, and then took them all apart for painting. The plywood and untreated wood needs protection against the elements, and it’s easier to paint these parts while they are flat, and disassembled. They all go back together pretty fast!

The last part is covering the structure with wire mesh. I used a 1″x 1″ 14 ga galvanized mesh that is available from Home Depot if you special order it. The first time I bought this stuff several years ago, I paid about $100 in shipping because the stuff was not available locally. What I found out was that if you find the product you want from a manufacturer that does business with Home Depot, you go to their “pro” desk and ask them to special order it. No shipping charge!

I found the  1″ x 1″ mesh to be ideal because (a) it looks nice (chicken wire makes it look like a chicken coop — not my decor), (b) it’s sturdy enough so the cats can climb on it and not deform or make holes in it, and (c) it’s large enough to minimize the obstruction of the view from inside, yet small enough to prevent unwanted “visitors”. The visitors that are small enough to get through are taken care of by the cats….

I chose a 36″ mesh width because that fit very well with the proportions of the framing, which minimizes the amount of cutting of the mesh. It also makes it easier to handle when attaching to the framing.

Attaching the mesh single-handedly can be challenging because the mesh has a “memory” that tends to spring the damn stuff back on top of you and give you scratches. When people see my recent scratches, they ask if they are because of my cats. Well, in a sense, yes.  But I digress. I found that laying a long piece of 2x lumber lengthwise will (a) prevent the roll from coming back on you when you’re cutting it, and (b) can help you stabilize the piece when you fit it to the frame. The other “must-have” is a pneumatic stapling gun. It makes aligning the mesh fairly straightforward, and for quick work in stapling it down the rest of the way. Yet another reason to buy that “new tool”. At least one new tool per project…. that’s my motto.

Using a spare 2x4 to hold the roll of wire mesh in place for measuring and cutting.

Using a spare 2×4 to hold the roll of wire mesh in place for measuring and cutting.

The mesh has a "memory" which tends to roll it back to its original shape. If you try to straighten it out, chances are it will be deformed when you staple it in place. The best strategy is to work with the spring-back. Align to the framing by tacking the middle of one end to the framing, and then aligning one edge to the framing and tacking the edge in place. Once aligned, it is relatively easy to "unroll" the mesh as you progressively staple it to the frame.

The mesh has a “memory” which tends to roll it back to its original shape. If you try to straighten it out, chances are it will be deformed when you staple it in place. The best strategy is to work with the spring-back. Align to the framing by tacking the middle of one end to the framing, and then aligning one edge to the framing and tacking the edge in place. Once aligned, it is relatively easy to “unroll” the mesh as you progressively staple it to the frame.

The 4x4 is being used to hold back the "spring" in the mesh. Once the mesh is aligned, it is easy to tack in place with the pneumatic staple gun.

The 4×4 is being used to hold back the “spring” in the mesh. Once the mesh is aligned, it is easy to tack in place with the pneumatic staple gun.

Finally, having a little “cat door” is essential because you want the cats to enjoy the space when they want to. And you don’t want them bugging you. There are many kinds of animal doors available, and I chose one that had a magnetic strip which keeps the door vertical when not in use, plus a 4-way lock (open, locked both ways, locked in, locked out). Some come with an RFID chip that you put on your cat and the door allows only your cat to go in and out, but that was way too fussy for me.

The catio makes an elegant (well, at least consonant) outdoor space where we can enjoy our cats and the outdoors together. Is it cocktail hour?

The catio makes an elegant (well, at least consonant) outdoor space where we can enjoy our cats and the outdoors together. Is it cocktail hour?

The finished product. Suitable for human and beast.

The finished product. Suitable for human and beast.

The catio should be appealing to both cats and their caretakers.

The catio should be appealing to both cats and their caretakers.

A catio should be a place where the cat caretakers can enjoy the space along with the cats. Cats like human companionship, and we can share and enjoy this space with each other.

A catio should be a place where the cat caretakers can enjoy the space along with the cats. Cats like human companionship, and we can share and enjoy this space with each other.

Here is a video of our cat family:

 

Staking Out Your Territory — How To Survey And Set The Grade

One of the challenges that any builder has is to transfer what is on the plans to the physical reality of what you happen to be working on. If you’re building a birdhouse, then you have to take the written dimensions on the plan and transfer them to the wood. Remember to subtract the width of the saw kerf! (My woodworker friends will appreciate this bit of free advice.) If you’re building a structure on a piece of land, you have to transfer those dimensions to the land. This is not a trivial endeavor,  because land is not necessarily level, square, or plumb. That’s construction terminology for orthogonal axes in a cartesian coordinate system, depending on your point of reference. But I digress.

The bottom line is that you first have to establish reference points, relative to your plans, to measure and mark your material. With wood, this pretty easy because typically  the raw material has reasonably straight and square edges. With land, you are on your own. The first priority is to establish a reference point. In the world of land surveyors, this comes down from edicts issued from backroom deals made among the wealthy and powerful who claimed the land and established certain boundaries, which may or may not have had any bearing on the indigenous people who currently occupied the land. So, because the rich and famous had guns and cannons. they displaced the indigenous occupants who had no concept of land ownership, and established the boundaries that you and I obey.   Again, I digress. Maybe this is a sign of old age.

So, if you follow the legal thread, you own property, which is documented precisely in the county records. Your deed specifies the plat (the drawing) that is the official and legal record of the land that you own. That plat has specifications which detail the dimensions of your land, as well as the precise locations of the corners of your property. If you are adventurous, you can probably take the data from the  records, and locate the surveyor’s marks on your property. If you are a city dweller, then you may see them as little nails in the sidewalk.

The builder of the house will transfer the dimensions of the corners of the property to the footprint of the house. There, the builder will begin excavation, pour the foundation, and build the house. All per the plans submitted to the city (or “building official”) and approved. It is with this thread that I start my measurements. My assumption was that the house was situated correctly on the property, and since my objective was to obtain proper drainage via a proper grade away from the house, I would use the corners of the house as the reference points.

But the problem remained: how to accurately locate the level of the land when the raw material was dimensionally random. For this, I had to learn a little bit about surveying. The basic geometry is middle school math, but the application is a bit more nuanced. How do you measure a level over a long distance? How do you mark the reference and set the other marks precisely relative to this reference? Professional surveyors use high-tech tools like laser levels and differential GPS theodolites. The equipment costs thousands and rents for hundreds. Was there a DIY solution? Well, yes. There is ALWAYS a DIY solution!

The first step was to take inventory of what I had. I had a laser measuring “tape” (I bought it when I needed to take the dimensions of the “as built” house for my plans.), a tripod, and an iPad. I checked out the apps that were available for the iPad and. lo and behold, somebody had developed a theodolite app. A theodolite is an instrument which will tell you the precise azimuth, elevation, and level from a given reference point. (If you don’t understand this terminology and how to convert polar coordinates into cartesian coordinates, then maybe surveying isn’t your thing.) The theodolite app was the ticket. All I had to do was to build a “surveyor stick”.

To explain: Surveyors need to measure changes in elevation over long distances. To do this, they set their measuring device (transit, theodolite) over a designated reference point, and then focus on a “stick” that is held by an assistant at the point they want to measure. That stick is essentially a ruler, which if the transit/theodolite is level, will measure the vertical distance between the observer and the stick.  If you combine this information with the azimuth (i.e., the angle from true North), you will have an EXACT location of that point on the earth. So, I needed a surveyor stick that was self-supporting because I couldn’t assume that I would have an assistant. I designed one, and the plans are here.SURVEYOR’S STICK. Once I was able to measure the difference in elevation, all I needed to do was to establish the grade, i.e., the slope, to allow the proper drainage. The slope is 2% away from the house, and 1% from front to back. So using my handy-dandy laser rangefinder, I simply multiplied my measured distance by the % slope to get the final elevation at the measured point.

All I had to do now was to research a bit of jargon with respect to grading and how to actually mark the property. The first thing I learned was that surveyors will mark the land using squat little stakes called “hubs” which are pounded level into the ground where you’re making your measurement. The vertical distance of the hubs are then measured between the hub and the reference (theodolite). You then take that difference and compare that to the plan. If the measured vertical distance is greater than the required distance, you need to fill (raise) the level of the land at that point. If it is less, then you need to cut (lower) the level. If you do this at several points, you can establish the contour (grade) that the plans specify. So at each hub, I would put a grade stake, with a mark that indicated a cut “C” or a fill “F” of a given dimension. Professional surveyors use 1/100 of a ft., but since my measuring devices were calibrated in inches, I used that standard. Whatever works.

The cool thing about all of this was that after all of the staking, I began to see the real outline of the plan manifested on my actual property. It was, perhaps, a turning point in the project because it represented a change in direction from demolition to construction. In my mind’s eye, I now have a glimpse of how the finished product will look like.

Here are some pictures:

Grade Stakes. Don't you like the colors?

Grade Stakes. Don’t you like the colors?

My Site Plans and Measuring Tools

My Site Plans and Measuring Tools

Theodolite App. Awesome!

Theodolite App. Awesome!

Theodolite and Surveyor Stick

Theodolite and Surveyor Stick

Empty dumpster. Ready for the next load!

Empty dumpster. Ready for the next load!

 

Energy Conservation and California Title 24

California is known for being, among other things, a “progressive” state. I won’t get into the nuances of exactly what that means other than to point out that California has some fairly stringent energy conservation laws and regulations. One of them is the Title 24 energy requirements, and the law focuses on the twin aspects of energy efficient design regulations, and compliance regulations. Energy efficiency is always a design objective for any home or remodeling project, not only to minimize the ongoing cost of utilities, but also because there is great concern about reducing our collective energy “footprint” due to the impact on climate and the environment. There is always a trade-off between the extra expense that has to be incurred up front to make a home energy efficient, and the expense one saves in utility bills which amortize this up front cost. Hey, if you spend so much making your home super efficient, but it takes 100 years to recover the expense, maybe that’s not such a bright idea.

In California, some of the guesswork about this has been regulated away. However, the way the state has done it is pretty cool (IMHO). Instead of prescribing how much insulation or what kind of roof you can put on your house, you design using a performance based approached. The state has a free computer program that will calculate the energy efficiency of your house, and you can make tradeoffs between energy efficient windows, reflective “cool roof” shingles, radiant barriers, insulation, etc.. to get within requirements. These requirements are specific to your geographic location and take into account the orientation of your house, the historical weather conditions, the length of daylight, elevation of the sun, and calculate your energy usage over an entire year in 15 minute increments (that’s  34,560 iterations). The reason I think this is cool is because I’m a geek at heart and this computer based modeling interests me. Fortunately, because I modeled my house, it was easy for me to get all of the measurements (surface areas). California also has a simulation for commercial buildings and, check this out, it uses a SketchUp plug-in called Open Studio, which is made by the National Renewable Energy Laboratory.

OK, enough of the geek stuff. The output of the program shows you how much energy you’ll be using, and it ALSO gives you an idea of what your heating and air conditioning requirements will be.  So, for me, I now can approach an HVAC contractor armed with some knowledge and make sure that they are sizing the units correctly.

As I mentioned above, another thing the program was useful for was to do some design tradeoffs. I had originally planned to replace all of my windows with vinyl high efficiency window. One thing that I noticed was that (a) these things are darned expensive to have installed (figure minimum $500 per window), and (b) it’s pretty difficult to get the right materials. Replacement windows are DIFFERENT from new construction windows, and while you can work your window opening to accept a new construction window, it’s difficult and expensive to do. None of the retail outlets sell replacement windows. I did some serious research and the only thing I came up with was to find some contractor who could buy the windows for you, and maybe you pay him a little bit and he puts your windows on an order he’s doing for somebody else. I swear, there must be some sort of conspiracy! So I had resigned myself to get a contractor to come in and do the stinkin’ windows. In the course of finalizing my plans, I had a professional inspector come in and give me the low down on the condition of my home because I didn’t want any big surprises (more on that later). He asked me about the windows, and when I told him I planned on replacing them, he strongly advised against it. Although I have single pane aluminum sliding windows, he said that all they needed was a good refurbishment, and that the energy savings were minuscule because of climate we live in. In addition, vinyl windows started to exhibit problems in as little as 5 years (in his experience). So, I went back to the energy simulation program, put back in my original windows, and darned if he was right. Hardly ANY change in energy efficiency. THAT saved me about $8000!

I won’t get into California Title 24 lighting requirements too much. I will only mention two things. (1) Incandescent lighting is an EXTREME wast of energy! An incandescent light should be re-named a light emitting electric heater, because that’s what it is. Go with high efficacy lights such as LEDs or Compact Flourescent (CFL). (2) California Title 24 requires that you have special fixtures that accept a specific light base (GU 24) for all permanent lighting (like all of those recessed ceiling lights I want to put in). This is because the regulators wanted to make sure that the owners wouldn’t just go out and buy typical screw-in lights when the “fancy ones” burned out. Unfortunately, the market for these special light bases and fixtures is limited (to new construction in California), so the industry has responded by making a whole BUNCH of high efficacy lights with the screw base (Edison). Now, I don’t have much of a choice in lights because of this response to the code by industry. It turns out that the new requirements for 2018 will allow screw in high-efficacy lights. BUT, I’m being permitted under 2010 requirements, so I’m stuck. My plan is to get a bunch of really cheap GU-24 CFLs to put into my lighting and have the inspector sign off, then when he’s gone, buy a bunch of GU-24 to Edison adapters and get the screw-in lights I really want.

So, to conclude, if you have a “geek streak” and are interested in learning about energy efficiency,you might want to consider one of the computer models that give you an accurate picture of what your energy improvements, and savings, might be. It makes it easy to compare energy upgrade costs versus utility savings, and it can give you some really good information when it comes time to discuss options with contractors. Since it’s a requirement in California, you’re either going to have to DIY, or pay somebody to do it. For me it was worth the effort to DIY, and I now have a good plan for making meaningful energy efficient improvements for my project.

Kitchen Design

Now that I had the house drawn up. It was time to start thinking about the re-design. A good place to start was the kitchen because it’s my favorite room in the house. I happen to be an avid amateur chef, and before I started this remodeling project, I was the food King. Meaning that I did all of the menu planning, all of the food shopping, and all of the cooking. And I’ll probably want to pick it back up afterwards because I’m going to have a great kitchen to work in! These culinary experiences and interests give me a particular viewpoint on how a kitchen should be designed. I had some concepts and constraints in mind when I approached the kitchen design. In addition to having a good physical and experience-based idea of what I wanted as a cook, I also wanted to have things easy to clean, easy to access, durable, attractive, and inexpensive. There were many features of my current kitchen which I really liked, and in the end, I kept the same basic design. Yes, I tweaked some things, and yes, I came to the conclusion that I would have to re-do the cabinets and the island, which gave me the opportunity to put my woodworking skills and tools to good use, and incorporate some additional features. Let’s face it. Every dedicated DIY fanatic ALWAYS is in search of the next “project”, so here was yet another opportunity. And in continuing my research, I found that the original design was actually a better design than I thought. One of the things that I noticed about most of the model homes we visited during our “Love It Or List It” period was the fact that most kitchen designs suck. I mean really. Most of them look great if you just want to hang out and eat, but cook? Refrigerators across the room from the ovens. Islands too far from the other countertops. Backsplashes made of expensive material that looks nice but will be a bitch to keep clean. Storage that’s clumsily arranged and hard to get to. No concept of workflow (storage to preparation to cooking to cleaning). And my pet peeve:  a microwave over the stove.  So I started with that, and then went down the list of things that I didn’t like, but keep the stuff I did.

  1. Get rid of the microwave over the stove. These things have almost zero fan power and don’t extend far enough over the stove top to trap the oils and particulate that are a part of your cooking.  So all of that junk gets embedded in the wood of your cabinets and the ceiling above. Impossible to clean. Plus, the heat from the stovetop kills the plastic and fries the electronics. And the house gets all stunk up when you’re creating yet another culinary masterpiece that you will decide is too hard to ever do again. (Why do I keep doing that?) Replace it with a good vent hood that is designed for the purpose.
  2. Resize the island to make it closer to the sink so I could easily step back and forth, and farther from the refrigerator so people could go in and out of the kitchen with the refrigerator door open. Relocate the microwave to the island. Having the microwave in the island is a universal design concept that allows easy access to somebody who can’t reach high, but is convenient for everyone.
  3. Make pullouts for all of the shelves in the base cabinets, island and pantry. Another universal design feature. As you age, it’s more difficult to get on your hands and knees and look in the way-back for this pot or that bag of flour. Come to think of it, it’s a Pain-In-The-Ass (PITA) at any age. (If I didn’t spell it out, you would have thought I was talking about some kind of bread.)
  4. Redesign the island countertop for 2 levels. One at 36” for standing work, and one at 30” for seated work. Another universal design feature.
  5. Make the inner carcass of the cabinets around the dishwasher and sink out of pressure treated plywood. The current particleboard is coming apart.
  6. Integrate beverage storage/liquor cabinet into the island design.
  7. Lower the “spice rack”. My current island has an area between the work surfaces and the “bar” where I keep all of my baking and cooking essentials (spices, flour, sugar, oils, seasonings, baking power etc.) When you’re in the midst of cooking, this arrangement is extremely helpful in streamlining your workflow because you’re not constantly going in and out of the pantry to get the next ingredient. The only downers are (a) the tops of the containers tend to accumulate detritus — hopefully solved with the vent hood, and (b) it was placed too high to conveniently see the football games being played in the den. The new design corrects this problem.
  8. Provide a place for all of my cookbooks so I would have to ferret around for them (too much, anyway).
  9. Have a pull out cart for the mixer (a king size kitchen aid) that also serves as a supplemental work surface. More universal design.
  10. Provide increased task lighting and general lighting (universal design).
  11. Make the backsplash out of white porcelain tile with a decorative glass inset. Looks nice, easy to keep clean, and inexpensive.
  12. Have a white quartz countertop on the upper top of the island. The purpose is to be have a place to roll out pastries and cookies without having to lug out a slab of marble (which isn’t big enough anyway).
  13. All other countertops will be white Formica with a decorative oak rub rail. I did this on the first remodel of this kitchen about 12 years ago, and it still looks pretty good. Yes, it needs a refresh, but these tops aren’t that hard to make and they aren’t very expensive either so occasional replacement is no big deal. I guess I’m not a big fan of these stone/granite/marble/glass composite/concrete countertops. I mostly don’t like the look because it’s distracting when you’re trying to cook because it’s not a clean background, they’re hard surfaces so stuff breaks on them when you drop something, and they’re so dang expensive. They seem to be pretty popular, but I wonder if any of the designers/builders/owners of these are actually serious cooks. One question: Have you ever seen granite countertops in a restaurant kitchen? I think I prove my point. AND, I have the best restaurant in town. If you’re lucky, I’ll have you over for one of my dinner parties!
  14. Laminate wood flooring. I know what you’re saying – this stuff has a funny sound and is not as warm and inviting as real wood (or engineered wood). Here’s the deal: It’s inexpensive, has good traction (universal design), durable, and EASY TO KEEP CLEAN. Did I mention that it was easy to keep clean? Hey a bucket of water, a greenie, and a squeegee and you’re good to go. No fancy waxes, dirt in the grout lines, peeling varnish or gouges (like linoleum). I installed it in my last kitchen remodel 12 years ago and the only defect is when my King size kitchen aid mixer fell off the counter while kneading an extra large bread dough recipe and made a divot. It has filled up with dirt over the years so I’m GTG.

Here is a rendering of what the kitchen will look like.

KITCHEN REMODEL

KITCHEN REMODEL

 

 

 

 

 

 

Here is a SketchUp model of the island. If you know about Dynamic Components, check out the microwave, the drawers and doors, and the cart pull-out.

You’ll have to download a free copy of SketchUp to see it. Why resist?

This program is extremely powerful. And fun I might add. It has probably 90% of what you get in the pro version, and if your aim is to model, or do some small scale projects, this might be the ticket. BUT… if you want to DIY like a pro, well, you need to consider the pro version. More on that later.

Know What You’ve Got — Modeling The Existing House

The first step in designing a remodel is getting an accurate drawing, or model in this case, of what you have. This will allow you to do some design tradeoffs and, if you have a nice modeling program, give you a glimpse of what it will look like. The other benefit from doing this up-front work is that you end up learning a lot about how the structure is built and this helps give you a good idea about how to go about doing the actual work. Since I am using the SketchUp Pro modeling tool, some of what I’m going to write about will be particular to that tool. However I’ll try my best to put things in more general terms so that the narrative will be useful to as many readers as possible.

There are a number of different ways that can help you translate your structure and land into a modeling program, but the approach you decide on depends on what your goals are. For instance, it is possible to take digital pictures of your house and read them into the modeling program, do some rudimentary modeling shapes, and you now have a house. However, you don’t necessarily have the insides. Plus, if you’re going after a nicely dimensioned layout, then you’ll have to take some time to be accurate. All of the books that I’ve listed in my reference pages under design and modeling have various methods, and I encourage you to give them a look. For my purposes, I figured that just doing actual measurements would work, and it did. I had to do a lot of them, and it took several weeks of my spare time to put the model together. It looked pretty nice when it was done, but, as I kept reading about how to use the program, I found a couple of authors who did things in a much more streamlined way. So read the books first if you want to save some time. The other thing I discovered is that the building department will sometimes have the original plans for your home. Hey, somebody had to get a building permit at one point! So it is WELL worth your time, and the administrative fees, to obtain a set of your plans. Had I known this, or even had thought about it, I would have saved a lot of time.  In addition, you will likely have to show a detailed foundation plan if you’re changing any structure, and the easiest way to do it is to copy the original plans (sure beats excavating and measuring). That being said, nothing substitutes for poking around your house and figuring out what’s what. 2D drawings really don’t give you the sense of how the thing is built that a thorough walk-around and poke-about does. You’ll also discover a few other things that need “fixin’!

Here are a few things I learned about computer modeling when I did this project:

  1. There is a “goldilocks” level of detail. Too little, and you don’t get a sense of what the project is about. Too much, and the model becomes bloated and difficult to work with. Start simple and add detail as you go. If you need extra detail, like showing framing and such, then consider having a separate model for just those details.
  2. Be accurate. Learn how the modeling program “snaps” to various points and edges. I learned that the hard way and I can’t tell you the amount of time I wasted correcting sloppy modeling.
  3. Learn how to organize your model. Michael Brightman’s book (see “Design and Modeling” under References) has an excellent method, and had I used that the first time, I would have saved at least a week of my time.
  4. Customize your modeling program for workflow, meaning setting up toolbars and keyboard shortcuts. Again, Michael Brightman has some excellent ideas that will help you model faster.
  5. Be patient. Regardless of how intuitive a given program is to learn, it will take you some time to develop the necessary skills. You will make some mistakes, and in some cases, it will be easier to start over. Don’t be discouraged. Take the time to study and go on line to go through the numerous tutorials and You Tube video “how to’s”.
  6. If it’s time for you to get a technical refresh on your computer, consider getting a system optimized for graphics. The SketchUp online community organized a special deal with a custom computer maker (JNCS) that provided an optimum system. Yes, it cost some money ($4K when you include a really nice graphics monitor, wireless keyboard, and mouse for computer graphics), but it sure speeded up the modeling and I didn’t have to put up with the crashes caused by an inadequate system choking on the model.
  7. Have fun! The time spent 3D modeling can be reward in itself. It is especially cool if you can see a finished product and move it around, look inside, and see how it mimics reality.

Here is a render of my finished “as built” model:Rev 1.0 Render #1

 

ARCHITECTURAL DESIGN

Detailed Design — Learning How To Draw

Well, it was time to roll up my sleeves and get to work. The first thing I needed to do was to make up a drawing of my existing house. On several of my previous projects, I used a set of rudimentary drafting tools and some skills I learned in my 8th grade shop class  to draw up some fairly nice plans. In my most recent project (a “catio” more on that later), I used Microsoft Visio to make up a set of electronic plans. That worked OK, but it really wasn’t a full-on CAD program, which is what I figured I needed if I was going to produce a set of building plans (the ultimate goal). So, I started shopping around for an architectural CAD program. Most of these programs are several thousand dollars (Chief Architect — $2695, AutoCad — $4195), and they seemed pretty difficult to learn how to use. I eventually went for a dumbed-down version of Chief Architect called Home Designer. That cost $495, and it promised to be easy to use and had a lot of nice automated features such as detailing of walls and quick rendering of interior and exterior views. So I ponied up and got the program. The term “easy to use” was relative, and I spent a lot of time learning how to use the program. I went about measuring the house and modeling it in this program. After several months of my spare time, I came up with a decent model, but I found out a couple of things: (1) I really couldn’t produce a set of working drawings with this program — it’s for “designers” who give their concepts to real architects who have these expensive CAD programs that produce “real” drawings, and (2) all of that great detailing automation meant that you couldn’t go in and customize things. You had to accept the default materials, dimensions, etc. Plus, the program was quirky and wouldn’t accurately model some of the idiosyncrasies of my house. So I was becoming increasingly frustrated as I saw that I was approaching what seemed to be a dead end.

One day, I was lamenting my woes to a colleague at work, and he mentioned another 3D modeling program called “Sketchup”. He said that he made several remodeling plans for his home with it, and he was very happy with the program. Best of all, it was free.  No kidding. It turns out that there is a free version, now called Sketchup Make, and there is a “pro” version which includes a separate program called Sketchup Layout, which is a full-on drafting program. The pro version sells for $590, which is about the same as I paid for the Home Designer loser program. So, I decided to at least try out the free version, and I discovered that it was not only intuitive, but that there was a HUGE online community that offered all kinds of help in learning how to use it. Plus, there was another group of professionals who were using the pro version to design real buildings and produce real plans. I was sold. So I swallowed my pride and bought the pro version and started afresh. That was a bitter pill because I had to start from scratch. The good news is that as I learned the program, I could customize the model and make it really accurate.

Although the program was intuitive and I picked it up pretty fast, there were a lot of nuances that I needed help with. I ended up reading a whole lot of books, which ultimately gave me a bit of mastery over the program. I have a complete list of my references under the references page in this blog. I think all of them are good, otherwise I wouldn’t recommend them,  but I would suggest starting with either the “sketchup for dummies” or one of  Bonnie Roske’s books. Also, follow the links on the Sketchup home page, check out the SketchuCation website,  or just Google search on Sketchup and you’ll find TONS of You Tube video “how to’s” and other resources. As I mentioned before, there is a tremendous online presence to help you out.

So after a lot of time, I ended up with a pretty good model of my home and some good drawings. I can say that I really came to enjoy the process, and now that I have the skill set, I feel confident that I could approach any aspect of architectural design and drawing. The building department was favorably impressed and was asking if I had any background in design. Well, I guess after 3 years of my spare time messing around with it, I could answer in the affirmative, even though my path was somewhat random at times.

I will post some of the results of my labors when I have the chance, and when I can figure out how to do it on this blog. That’s another skill set which I’m beginning to learn about.