Getting Ready For A Concrete Pour

Things are beginning to shape up in front, and one of the final “projects” was going to be to pour the concrete. This is DEFINITELY a job for a professional crew — NOT DIY! I know this from harsh, personal experience. Oh, I know, the videos make it seem really easy, but trust me, striking off a mound of concrete with a screed is hard, messy work, and is actually quite comical if it’s just you and your wife doing it. OK, I’ve done a couple of small sidewalks, but this job is way too large and intricate to trust to anybody but a professional crew. Hey, at least give me credit for knowing the difference!

Be that as it may, I had my plans, so I know what I wanted to do. Well, at least I thought that I did at the beginning. More on that later. The fact is that a dedicated DIY’er can do essentially all of the prep work. This is quite a lot of work, it turns out, and while you may get some benefit of saving some money, the biggest advantage for me was giving the concrete subcontractor a lot of flexibility with the schedule. If you have a pro do the whole job (demolition, site and grade prep, base fill, building the concrete forms, and setting out the remesh), then you’ll have to wait several weeks until the schedule is clear for a multi-day (or week) job. If you do all of the work, it’s a 1 day job of pouring and finishing the concrete, which can be scheduled more easily. Now for all of that prep work.

Demolition was done previously, per several of my previous posts. And, although I did a reasonable job of getting the grade set correctly with the steer skid, I still had a fair amount of cleanup to do. The skid steer doesn’t get into the corners, plus I had to get some stumps ground after I had completed the initial excavation. Plus the rains over the winter (such as they were) ended up “displacing” some dirt which had to be “re-placed”. In other words moved around some more. I ended up barrowing out about 4-5 yards of dirt to the back.

Will I EVER get rid of this dirt?

Will I EVER get rid of this dirt?








The next thing to do was to set up a base. I had a choice between 3/4″ gravel and “class II  road base”. I decided to use gravel because I though it might be better, but it turns out that class II road base is what is typically used around here because gravel is used for areas where frost heave is a problem, and you want something to absorb the resulting ground motion. Road base is less expensive (!), and since it compacts way better, I plan on using it as the base for my brick-on-sand patio. So I find this out too late and I now have 7 yards of gravel to chuck  and spread around. C’est la vie! Fortunately this went reasonably quickly. The only hiccup was that I had to somehow figure out a way to get wheelbarrows of this stuff to the back while navigating around previously installed drainage pipes that were annoyingly protruding from the ground. My solution was to barrow a pile of gravel around the drains and then take some plywood and make little ramps so that I could gingerly push a wheelbarrow with several hundred pounds of gravel through the maze that eventually lead to the back yard. After all was distributed, I rented a plate compactor to give a good solid base.  Because the compactor wouldn’t fit into the corners, or around some of the obstacles sticking up, I had to use a hand compactor to get everything nice and tight.

That there is a cubic butt ton of gravel to move!

That there is a cubic butt ton of gravel to move!

Chucking gravel from front to back. Note the plywood highway.

Chucking gravel from front to back. Note the plywood highway.








I used a pile of gravel and some plywood ramps to navigate around the drain grates that were sticking up. I ended up raking the gravel level as i worked my way back, so it ended up all good.

I used a pile of gravel and some plywood ramps to navigate around the drain grates that were sticking up. I ended up raking the gravel level as i worked my way back, so it ended up all good.



Front entrance gravel all level and compact. Ready for the forms.

Front entrance gravel all level and compact. Ready for the forms.









While I was gearing up to move all of this gravel, I also had to buy lumber for the forms. So, I woke up early on a Saturday and headed over to the local Home Depot. Alas, it was raining, so it promised to be a mucky day outside. As I drove into the parking lot, I saw that the rental truck was conveniently parked, so I assumed it was available. I loaded up a bunch of lumber (plywood, 2x4s.), paid for it, and tried to rent the truck. I was then told it was out of commission for some obscure reason. Since my mood sufficiently sour to begin with, I vented my frustration. The customer service people were very nice, let me have my say, then proceeded to help me out with a free delivery. How good is that? So, shame on me for being a dickhead, but good for the Home Depot folks. I sent their boss a nice e-mail apologizing for my brief outburst and profusely thanking them for their excellent customer service. At any rate, I come back to the house and discover that my brand new wheelbarrow has a flat tire that will not succumb to mere inflation. So it’s back to Home Depot to get a flat-free tire. I guess it just was going to be one of those days….


My new wheelbarrow with a flat tire. Come on!

My new wheelbarrow with a flat tire. Come on!








Next was the forms. With my previous experiences with concrete, getting the forms right was always a challenge. So this time, I wanted to make them very sturdy and straight. I used 1/2″ plywood and made a frame of 2x4s to support the plywood so there would be no bending. The 2×4 frames also gave me something solid to work with so when I drove the stakes, I would be using the forms as the guide. The contractors who came out to bid basically said that this was overkill, and they may have been right. But as a DIY guy working alone, I think this gave me the best result and minimized the amount of fussing around to get the forms aligned and in place.

Frame for the form. I had to eventually rebuild this one because it was too large, but you get the idea.

Frame for the form. I had to eventually rebuild this one because it was too large, but you get the idea.

Detail of my forms. The corners are bolted together with braces that pull everything tight and square, and make disassembly very easy. Too bad I won't be using these again.

Detail of my forms. The corners are bolted together with braces that pull everything tight and square, and make disassembly very easy. Too bad I won’t be using these again.











Bottom of plywood on form extends down to allow for concrete to flow between levels to allow a monolithic slab without a lot of fuss in removing the form to finish the faces.

Bottom of plywood on form extends down to allow for concrete to flow between levels to allow a monolithic slab without a lot of fuss in removing the form to finish the faces.









One of the nuances of my design was that I wanted to place can lights within the concrete to provide lighting for the steps (as a safety feature). Although the lights that I chose were rated for casting in concrete, in the long run, that is a bad idea because when (not if) they fail, you’ll have to tear out the concrete to get to them. No thanks. So, my plan was to construct plywood molds that would result in a perfectly sized recess that I could fit the lights into. Additionally, the molds had a hole that accepted PVC conduit, so that I could run the wiring between the boxes and back out through the wires that I had cleverly routed around the house while I was digging the drainage lines to supply the power. This is 12v lighting, so no problem with running the wires adjacent to where water might be. However, on the back porch, the lights needed to be located near the top of the slab. This could be problematic with cracking, so I added a 1×1 wire mesh reinforcement with material I had left over from a previous project. I also knocked down the sharp edges of the plywood boxes to minimize stress concentrations. My hope is that, with these little details, plus the fact that I am going to tile over these fragile areas, will make everything all right.

After I had set up the forms, I and my wife had a good chance to look at what the final result might be and, you guessed it, we were having some reservations. So, we took a step back, and perhaps some steps around, and started to actually walk through the expected traffic patterns. After a few iterations, it became obvious that we had to change things around a little in the front, and that is one of the advantages of DIY. You really can change things at almost the last-minute without a great impact on cost or schedule. Had this been an agreed upon design and had I already had a contractor doing the work, changing this stuff would have been out of the question. Of course, perhaps my design was not so good to begin with, and maybe a pro would have come up with the right answer in the first place, but what fun is that? I also had to re-design (and re-build) the forms to have the proper height above the finished concrete surface and provide a gap underneath so that the pour could be continuous, resulting in a monolithic slab. Good thing I had ordered some extra lumber!

The front landing is disjointed and not ergonomic. It looked better in the model and plans.

The front landing is disjointed and not ergonomic. It looked better in the model and plans.

Just doesn't look right.

Just doesn’t look right.








That's more like it! Nicely balanced and allows access up the ramp (on the right), from the driveway apron (on the left), and from the garage.

That’s more like it! Nicely balanced and allows access up the ramp (on the right), from the driveway apron (on the left), and from the garage.









While I was doing all of this, it was time to get some bids for the work. I had a number of folks come by, and each was very helpful and offered some advice as I was finishing up. One comment was pretty much universal: “Fill in the areas where you have deep concrete (e.g. the back porch and front landing) with materials that are less expensive than concrete. Well, it turns out that I had a big pile of masonry detritus  accumulated from my previous work, so it was a no-brainer to chuck that stuff into these areas, if not to save money, than to just get rid of the stuff in a manner that did not involve surreptitiously dumping this crap into the residential waste stream over a long period of time. Which is my normal modus operandi. I learned this from my wife.

Finally, the re-mesh. This is a welded wire mesh that is used to provide reinforcement in the concrete. It is made of large gauge (#6) steel wires that are spot welded together to form a  6″x6” mesh. You can buy these in flat sheets of 5’x8′, but that is much more expensive than buying a 150′ roll and cutting it yourself. Of course, I did the latter. I had previously purchased a heavy-duty wire cutter (essential for this work) and set about unrolling the beast and nipping off sections so that they fit where I needed to put them. I ended up with a number of relatively small pieces because (a) they were easier to make flat — the roll has some “memory” so you have to bend it a little to make it lie flat — and (b) they were easier to handle and place where I needed them.

Back porch ready for the pour. Can you see the masonry detritus poking through the gravel? Also a good look at the forms and reinforcement for the can lights.

Back porch ready for the pour. Can you see the masonry detritus poking through the gravel? Also a good look at the forms and reinforcement for the can lights.

Left driveway apron all ready for the pour.

Left driveway apron all ready for the pour.











PVC electrical conduit is supported by rebar stakes so that it won't bend when the concrete is poured over it.

PVC electrical conduit is supported by rebar stakes so that it won’t bend when the concrete is poured over it.

Service sidewalk all ready. I'm replacing the square grates with round ones on the advice of the subcontractor to minimize cracking.

Service sidewalk all ready. I’m replacing the square grates with round ones on the advice of the subcontractor to minimize cracking.











Now everything was all set and the bids were in. It was time to choose a subcontractor. I chose a person who (a) provided a reasonable price (part of my day job is cost estimation, so I knew what the price range should be), and (b) would provide a schedule (e.g., meeting time, estimates), and stick to it. I believe the latter is a key indicator of future performance.

I’m meeting with the subcontractor tomorrow, and with luck, I’ll have the concrete poured by the end of the week. Wish me luck!

Shopping for Parts — What Else Would I Do On Black Friday?

As the last bits of excavation and site preparation come to fruition, the project is now entering the phase where I have to actually start buying materials. When I was making my plans, I did a lot of research on the Internet to make sure I could source the critical parts that I needed, and I did some preliminary estimating. Even though it was quite helpful, things become more serious when you start putting cash on the table. Back in the day, I would spend hours perusing the aisles of the big box stores, writing down prices and in general figuring things out. Now I spend hours on the Internet, copying and pasting prices and in general figuring things out. At least I don’t have to waste time travelling to and from the store. And I can sip a beer without fear of arrest.

All kidding aside, the Internet and stores with an on-line presence are the best thing that has happened to DIY’ers since, well, DIY. Not only can I check inventory and prices, but I can also source difficult to find products and have them shipped to me. For example, I was looking for an irrigation controller that was set up for a smart home, and I found one for sale directly from the manufacturer (Irrigation Caddy). It has an ethernet port, controls 10 zones, and has a rain sensor option. Boo-Yah! In addition, many of these stores have a lot of how-to’s. I completely figured out my outdoor 12v lighting system from a website that sold lighting parts directly from the factory (Landscape Lighting World). They had tons of how-to videos and some very practical advice on landscape lighting. Their products seemed pretty good as well, and when I compared prices, they were reasonable, so I ordered from them.

The big box stores also have significant online presence, and the ones that I use (Home Depot and Lowe’s) have convenient features on their websites that allow you to develop lists. However, sometimes navigation of that all that stuff is tricky. For instance, if you type in a key word on the Home Depot site, you get results that are typically incomplete. The best way to search is to drill down from the home page once you find the department where the product is located. The other hassle is that sometimes you get things that are in the store, which get pulled immediately, and other things which have to be shipped to the store. So I get several e-mails and texts urging me to hurry to pick up my in-store order (and being threatened that they will cancel it) while they haven’t even shipped the balance of the order to the store. I eventually straightened that out, but really, HD should figure out a way to let me know when the complete order is ready for pick-up. Then some items they won’t ship to the store and they’ll charge you to ship it to your home. For example, I wanted to order some drain pipe, and the price was $28, but the shipping was $55. No thanks.

Of course, sometimes they won’t have what you want. Mostly, I try to figure out a way to order it from someplace that has free shipping like Amazon, but in some cases, that’s impractical. So, it’s back to the big box store where you can ask if they can do a special order. My experience with these is pretty positive, because the folks at the special order desk typically have a lot of experience, and they will do thorough research. If they can order the part, you’ll have it in a few days. If they can’t they usually will give you good advice about who may have it.

Lastly, sometimes you really need to see the product in person. Thus far, I’ve been pretty fortunate in that I’ve been looking up the product specifications on line while I was in the planning phase, so I have a very good idea of what I want and how much I need. This works fine for commodities (pipe, wire, fittings), especially if they’re hidden. If they’re not, then you have to start worrying about color and texture, and shape, and … all that stuff that I’m not very good at. So, because my wife has a far superior sense of style, I enlist her help when it comes to these things. She also has a vested interest because she doesn’t want the house to look like I dress. Well, ok,  like I USED to dress before she started picking out clothes for me. Now, I have to busy myself in obtaining “samples” so we can carry them around when we look at materials. These samples go beyond paint samples, although that’s included. We’re talking brick, retaining wall blocks, roofing shingles, … etc.. I hope I don’t need a truck to haul this stuff around! Actually, I exaggerate. All we really need are paint samples and a piece of roof shingle. Be that as it may, my wife is correct about getting all this stuff together to see what it looks like in person. Pictures on the Internet can fool you when it comes to colors because there are so many variables (lighting direction, lighting color, camera settings). Sometimes you can get the data, such as RGB values, for colors, and that can help with computer rendering. But bottom line is that you need to see things in person to make sure. Especially if you’re buying several pallets of bricks for a brick wall. I have a feeling that would be WAY more difficult to return than a pair of bunny slippers.

Home Fire Sprinklers — Why I Did It

When I was fiddling around in my “research” phase of what it would take to make my home compliant with contemporary standards, I stumbled across the requirement (in California at least) to have new construction homes be equipped with a fire sprinkler system. Being a veteran of the Navy, where there is a fetish about fire protection and safety — think about it, you’re surrounded volatile fuels and explosives in the middle of nowhere — it, needless to say, piqued my interest. I found out that IF you are involved in a fire (unlikely because I have been careful about minimizing the root causes of fire), then the statistics show that protection with a residential sprinkler system increases your survival rate by 80% and decreases your property damage by 70%. How could I not continue? Did I mention a fetish?

It turns out that installation of a residential fire sprinkler system is within the DIY realm. If you’re trying to go with a “modern” plumbing system, which has all sorts of headers and networks and PEX pipes, then it’s probably not DIY. If you don’t know what PEX or a networked plumbing system means, then it’s DEFINITELY NOT DIY. However, if it’s just a retrofit or a new construction, you can install a simple “tree-branch” design.

A “tree-branch” design is simply a source of water that has runs and branches to distribute the water to the individual sprinklers. The basic design mimics the design of a standard plumbing system. The source of the water needs to come from the main water supply to the house, and then branches off before the supply to the rest of the domestic water system. The sprinklers can be thought of as a “complimentary” plumbing system. So, if you can install plumbing using CPVC (Chlorinated Poly Vinyl Chloride) pipe, you’re GTG with a DIY installation. Except…..

There is a pesky requirement called a “hydraulic calculation” which involves a litany of limitations and specifications which, if followed, will ensure that your sprinkler system will spray the correct amount water over the area that it is designed to cover. There are a lot of variables, and the interaction of these variables (e.g., pressure, flowrate, pipe diameter, K-factor) can be intimidating if not fully understood.

FORTUNATELY (for me), this is right up my alley. My studies in chemical engineering involved fluid flow, so I had a good background in what the calculations were all about. I dug back into the recesses of my tiny brain, and , with the help of Wikipedia, reconstructed the seldom used  neural synapses to come up with a spreadsheet which helped me figure out the required water pressure at the street main, and the required water pressure of my design. So I called the water authority to get the pressure at my residence (105 psi) and I went merrily to work. I submitted my design, and got told that it was F/U.

First, the assumed pressure was wrong. I had to submit a request for the available water pressure at worst case conditions. It turns out that the fire department and water authority have this dance figured out. I was just not invited to it. Bottom line is that I had to request a “residual” pressure base on worst case conditions. Once I received that, I was back to ground zero. Second, I was not properly accounting for the pressure at the “second” sprinkler. Code requires that whenever you have two or more sprinklers in the same room (compartment), then you must use the most limiting flowrate from two of those sprinklers. I had to lick my wounds and remember the lessons that I learned (and apparently forgot) in my sophomore fluids flow class, and revise my handy-dandy spreadsheet to make it reflect reality.

With the new available pressure, and the right methodology with my spreadsheet, I had to re-do the entire design. In the end though, I actually was able to make the design easier and less expensive to install. The key was to make the k-factors similar. If you don’t understand what I’m talking about, then maybe you shouldn’t be designing a residential fire sprinkler system.

The upshot is that my sprinkler design was approved today. I’m actually quite proud of it because the majority of designers plug their designs into a computer program which tells them whether they are right or not. I did the calculations by hand, so I know that the design will work because I understand the underlying principles. OK, I used a spreadsheet, but I had to put the Hazen-Williams formulas in. I’m sure that if you contract a designer to provide a sprinkler plan for you, that it will be correct and will work just fine. It’s just that the designer won’t know exactly why. Let’s just keep that as our personal secret.

Here is my advice (for what it’s worth):

  • Get a residential fire sprinkler system. The cost is more than worth the peace of mind and the protection it offers your family and your home.
  • If you’re DIY, but perhaps not so interested in the nuances of hydraulic calculations, then try to hire a designer who will give you plans. Having said that, you’d better understand some of the nuances of fire sprinkler installation. There are very specific requirements for the mounting of the supply lines and sprinklers so that they don’t jump around when they get activated.
  • If you’re interested in the design, here are some references:

Residential Fire Sprinklers



Here are my plans:1370 BFD Fire Supression R 2.5

And the spreadsheet for the hydraulic calcs: 1370 BFD Hydraulic Calculation Worksheet CPVC

OK, I know I’m a geek at heart. I really do love to design and to manifest my ideas, in terms of numbers and letters (in the correct sequence) so that they can be created in the physical world. This is what I’m all about, and this is what I hope you can see as I take my next steps on the DIY highway.


P.S.  Did you notice that “Why I Did It” contains DIY backwards?


Staking Out Your Territory — How To Survey And Set The Grade

One of the challenges that any builder has is to transfer what is on the plans to the physical reality of what you happen to be working on. If you’re building a birdhouse, then you have to take the written dimensions on the plan and transfer them to the wood. Remember to subtract the width of the saw kerf! (My woodworker friends will appreciate this bit of free advice.) If you’re building a structure on a piece of land, you have to transfer those dimensions to the land. This is not a trivial endeavor,  because land is not necessarily level, square, or plumb. That’s construction terminology for orthogonal axes in a cartesian coordinate system, depending on your point of reference. But I digress.

The bottom line is that you first have to establish reference points, relative to your plans, to measure and mark your material. With wood, this pretty easy because typically  the raw material has reasonably straight and square edges. With land, you are on your own. The first priority is to establish a reference point. In the world of land surveyors, this comes down from edicts issued from backroom deals made among the wealthy and powerful who claimed the land and established certain boundaries, which may or may not have had any bearing on the indigenous people who currently occupied the land. So, because the rich and famous had guns and cannons. they displaced the indigenous occupants who had no concept of land ownership, and established the boundaries that you and I obey.   Again, I digress. Maybe this is a sign of old age.

So, if you follow the legal thread, you own property, which is documented precisely in the county records. Your deed specifies the plat (the drawing) that is the official and legal record of the land that you own. That plat has specifications which detail the dimensions of your land, as well as the precise locations of the corners of your property. If you are adventurous, you can probably take the data from the  records, and locate the surveyor’s marks on your property. If you are a city dweller, then you may see them as little nails in the sidewalk.

The builder of the house will transfer the dimensions of the corners of the property to the footprint of the house. There, the builder will begin excavation, pour the foundation, and build the house. All per the plans submitted to the city (or “building official”) and approved. It is with this thread that I start my measurements. My assumption was that the house was situated correctly on the property, and since my objective was to obtain proper drainage via a proper grade away from the house, I would use the corners of the house as the reference points.

But the problem remained: how to accurately locate the level of the land when the raw material was dimensionally random. For this, I had to learn a little bit about surveying. The basic geometry is middle school math, but the application is a bit more nuanced. How do you measure a level over a long distance? How do you mark the reference and set the other marks precisely relative to this reference? Professional surveyors use high-tech tools like laser levels and differential GPS theodolites. The equipment costs thousands and rents for hundreds. Was there a DIY solution? Well, yes. There is ALWAYS a DIY solution!

The first step was to take inventory of what I had. I had a laser measuring “tape” (I bought it when I needed to take the dimensions of the “as built” house for my plans.), a tripod, and an iPad. I checked out the apps that were available for the iPad and. lo and behold, somebody had developed a theodolite app. A theodolite is an instrument which will tell you the precise azimuth, elevation, and level from a given reference point. (If you don’t understand this terminology and how to convert polar coordinates into cartesian coordinates, then maybe surveying isn’t your thing.) The theodolite app was the ticket. All I had to do was to build a “surveyor stick”.

To explain: Surveyors need to measure changes in elevation over long distances. To do this, they set their measuring device (transit, theodolite) over a designated reference point, and then focus on a “stick” that is held by an assistant at the point they want to measure. That stick is essentially a ruler, which if the transit/theodolite is level, will measure the vertical distance between the observer and the stick.  If you combine this information with the azimuth (i.e., the angle from true North), you will have an EXACT location of that point on the earth. So, I needed a surveyor stick that was self-supporting because I couldn’t assume that I would have an assistant. I designed one, and the plans are here.SURVEYOR’S STICK. Once I was able to measure the difference in elevation, all I needed to do was to establish the grade, i.e., the slope, to allow the proper drainage. The slope is 2% away from the house, and 1% from front to back. So using my handy-dandy laser rangefinder, I simply multiplied my measured distance by the % slope to get the final elevation at the measured point.

All I had to do now was to research a bit of jargon with respect to grading and how to actually mark the property. The first thing I learned was that surveyors will mark the land using squat little stakes called “hubs” which are pounded level into the ground where you’re making your measurement. The vertical distance of the hubs are then measured between the hub and the reference (theodolite). You then take that difference and compare that to the plan. If the measured vertical distance is greater than the required distance, you need to fill (raise) the level of the land at that point. If it is less, then you need to cut (lower) the level. If you do this at several points, you can establish the contour (grade) that the plans specify. So at each hub, I would put a grade stake, with a mark that indicated a cut “C” or a fill “F” of a given dimension. Professional surveyors use 1/100 of a ft., but since my measuring devices were calibrated in inches, I used that standard. Whatever works.

The cool thing about all of this was that after all of the staking, I began to see the real outline of the plan manifested on my actual property. It was, perhaps, a turning point in the project because it represented a change in direction from demolition to construction. In my mind’s eye, I now have a glimpse of how the finished product will look like.

Here are some pictures:

Grade Stakes. Don't you like the colors?

Grade Stakes. Don’t you like the colors?

My Site Plans and Measuring Tools

My Site Plans and Measuring Tools

Theodolite App. Awesome!

Theodolite App. Awesome!

Theodolite and Surveyor Stick

Theodolite and Surveyor Stick

Empty dumpster. Ready for the next load!

Empty dumpster. Ready for the next load!


Site Planning Complete — Digging Has Commenced!

Although I had to submit a “site plan” to the city for inclusion in the building permit plan set, I really didn’t have a plan that was detailed enough for me to work with. Additionally, when it came time to start digging, my wife and I took a second look at the front yard and decided to completely change it since it had to be gutted anyway. As mentioned in my previous post, I had to add an irrigation system, and I determined that all existing retaining walls had to be re-done because when I lowered the backyard grade to the correct level, it would undermine the existing retaining wall. Talk about project expansion! So, I went about revising the site plan, and I’ve uploaded it here: 1370 BFD LANDSCAPE PLAN R 0.0 for your reading pleasure.

The first action that I had to do was remove all of the bricks and sand from my existing patio. Rather than toss the bricks and buy new ones, which would be tremendously expensive and wasteful, I decided to pressure wash them and stack them up. For the sand, I needed a way to screen out all of the mess, and after some research, I came upon a website that had plans for a hand “trommel”. This is a device that was used by gold prospectors, and it turns out that there is an active hobby community that goes out and does this sort of thing. Hence, there are resources available. You could buy a motorized one, all assembled, for a lot of money, but a guy developed a plan for a real DIY trommel that is made of Home Depot (or Lowe’s) buckets, some PVC pipe and fittings, and some screen. Here is a link to his page, and here is a picture of my finished model.

Site Work 043

I also needed to get rid of all of the plants in front of the house. This would be no easy task as it was overgrown with agave and rosemary. They were pretty plants, and it was a nice ecosystem with zero maintenance (no watering), and buzzing with bees who were hard at work gathering rosemary nectar. (That would make awesome honey!) Alas, with heavy heart, we called in a landscaper to do the dirty work. Good thing because he got attacked by the bees and had to go to the drug store to get some benadryl. Plus, digging out that agave is a royal pain. It as well worth the $850 I paid him and his helper. Here are before and after pictures:

Front Yard After

Front Yard After

So, work is now well underway. There’s still a lot of site work to go, but I’ll have more updates along the way. Next up: Dumpsters and Steer Skids!

Front Yard Before

Front Yard Before







Irrigation — And How A Project Expands

This past week, I’ve been working on gutting my landscape. The reason for this is because the first order of business is to install a site drainage system. The reason this is first on the list is because I have to excavate in order to install my upgraded electrical power line from the power head on the street. I then have to cover it up and pour concrete because that is where I am going to place the temporary storage box for all the household crap I have to move in order to vacate my master bedroom to build out the addition. A real Chinese puzzle.  But I digress. So, if I’m going to excavate and break up concrete and hardscape, I better do this once. That means that I have to plan for ALL underground utilities, being it 12V lighting, drainage, or irrigation.

When I started looking into irrigation, I wanted to make sure that I was making a very conservative plan as water, especially for irrigation, is a scarce resource here in Southern California. My studies revealed that the two approaches which made most sense were drip irrigation with a xeriscape, and use of grey water from the laundry. First the xeriscape.

The idea of a xeriscape is not new. There are several high quality example gardens in our area, and we have visited them on more than one occasion. The idea is that you provide some drip irrigation to start the plants out, and as they mature, they require less and less water. Plus, drip irrigation is very efficient as it waters the roots directly, as opposed to spraying water all over the place and having the excess run down the storm drain. Let’s face it: if you live in Southern California, or any other place which is subject to drought, then you should be ashamed of yourself if you have spray irrigation. Especially if you have a lawn. If you like the expanse of green, then get artificial turf. The modern and smart way to landscape is with drip irrigation and water conservative plants.

The best reference I was able to come up with was a website called  The person who writes this is a professional landscape architect, and his information is very detailed and practical. Regardless of what irrigation system you choose, you would do well to visit this site and to peruse, if not read thoroughly, what he has to say. I learned a TON about what to do, but more importantly, what NOT to do. Pay particular attention to the section on backflow prevention. This is serious stuff, especially if you don’t want your drinking water contaminated with whatever happens to be on or near your drippers. After all, animals, both domestic and wild, have to do their business somewhere!

The other thing I discovered, and I am STOKED about this, is the use of grey water for irrigation. Grey water is waste water from your house that is not sewage, e.g., not from your toilets. So, anything from your sinks, showers, dishwasher, or laundry, is considered grey water. Now, if you’re ultra conservative, you could set up a system that uses ALL of your grey water for irrigation purposes. But some of this requires permits and professional design. However, there is a low-cost DIY approach: using the effluent of your washing machine. Your washing machine uses a lot of water per load. If you have a top loader, then it’s 40 gallons per load (20 gal wash and 20 gal rinse). Even the high-efficiency front-loaders are 20 gallons per load. So, why not put all of that water to use in irrigating your property? The answer is that it’s pretty simple and definitely within the realm of a DIY project. First, there’s typically no permit required. Second, it’s relatively cheap. All you need is a 3-way valve, a vacuum breaker, some PVC pipe and fittings, some materials to make a bunch of mini-dry wells (perforated pipe, gravel, and circular pavers), and some inexpensive valves to regulate the flow such that you have an even distribution of water. There are some regulations that you have to be aware of, such as property line setbacks and having sufficient surface area to distribute water so that it doesn’t pool or overflow, but these requirements are spelled out very succinctly in a number of on-line articles. The best one is a manual that was produced by the city of San Francisco, CA (San Francisco Grey Water Design Manual) that is a very comprehensive guide. It includes detailed instructions for installation of a DIY laundry effluent grey water system. In my jurisdiction, Chula Vista, CA, the city took (plagiarized) elements of this manual for local guidance. So, if you care about water conservation and are in an area where drought is a concern, this something very simple and do-able for the average DIY.

The San Diego County Water Authority published a good guidebook on how to design a “water-smart” landscape (here). Additionally, the City of Chula Vista posted some professionally designed xeriscapes. Here is the link, but for some reason, it’s not working at the moment I’m writing this, so I’ve posted one of the plans here: wildlifefriendly-irrigationplanwildlifefriendly-planwildlifefriendly-plantimageswildlifefriendly-concept,

So, this was an expansion to the original project, but for several reasons, I think this is the way to go. I’ll have more details about my site plan in future posts.

Detailed Design — How To Design A Structure

After the architectural design was complete, the next step was to actually figure out how to construct it. My plans needed to be detailed enough for the city building department to approve them. At first blush, one might think that pushing out a bedroom by seven feet is no big deal. Throw together a few trusses, use the existing flooring, build some walls with holes in them for windows, and you’re done.

Well, not really. The short story is that building codes have advanced, and when you build an addition, you are actually going to build a carefully engineered structure. If you’re really not a die hard DIY and/or don’t have any background or training in structural engineering or construction, then your best bet is to hire a designer to do the work. They aren’t cheap (I got a quote for $7,500 minimum), but it may be worth it, depending on the complexity of your project. Having said that, you don NOT have to be a structural engineer to design an addition , or any other structure for that matter. All you have to do is follow the prescriptive  methods contained in the applicable codes. This is essentially a “cookbook” method of designing a structure that includes a number of safety factors such that a design using these methods will withstand loads and stresses (people, wind, earthquake, etc.) that are expected for a residential home in a specific location. Here is where you can benefit from my experience. DO NOT try to get all fancy and design something that is not clearly specified in the codes and deviates from the “cookbook recipe”, then you will have to get a sign-off by a licensed Professional Engineer (P.E.). Again, this is expensive, and probably not worth it for a smaller project. So if you’re willing to spend some study time (and maybe even learn something!), a DIY solution awaits!

The best place to start is the building code that is applicable to your jurisdiction. The California Residential Code is actually reasonably easy to follow, but I found the American Wood Council Wood Frame Construction Manual (WFCM) a better resource for my purposes. Since the California Residential Code allows it, that is what I used. What really made a difference and put it all together for me was the WFCM Workbook, which has an example home design that steps you through the process. You will also have to determine the environmental conditions that your structure will need to withstand. This includes maximum wind conditions, seismic design category, whether or not you’re in a flood zone, maximum and minimum temperatures, termite infestation likelihood, and other factors. These are usually spelled out in the code and it makes sense to put together a little table for yourself so that you can refer to it when bouncing back and forth between the various parts of the code to get your numbers.

The approach that I used, which was taken directly from the WFCM workbook, was to start at the top and work my way down from the roof to the foundation. At each step you not only have to specify the materials (trusses, roof underlayment, studs, joists, etc.), but you ALSO need to show how these elements are connected. The code gives a table of fasteners (mainly nails) for fastening framing and sheathing, but when it comes to connecting major assemblies to each other, you typically have to use engineered specialty connectors (for example, roof truss to wall top plate). You have to be able to show, step by step, that the loads from each element are transferred through successive elements all the way to the foundation. So, roof to wall, wall to floor, floor to wall, wall to foundation.

A quick word about fasteners. The common nail is a very nuanced component. There are many types of many materials, and it is IMPORTANT that you use the right nail for the right purpose. The tables in the code tell you what to do, but therein are requirements for not only nail type, but spacing, and orientation, e.g., toe nail vs. face nail. Bigger and more is not necessarily better because you risk splitting the underlying wood member. So follow the instructions! In general, nails are better than screws, especially for framing. This is because they have significantly higher shear strength, and have some ductility which means that they will “give” a bit in a storm or an earthquake whereas screws tend to be brittle. Not that screws are bad. Just don’t use them for framing or shear walls. An exception to this are structural wood screws (SWS). These are larger screws made of heat treated steels that have higher quality control than your run-of-the-mill screw. The manufacturers of these screws have data sheets which detail their application. I used them in some places, a ledger board for example, but in general, I stuck with nails when I could.

One thing that was scary for me at the last was trying to figure out how to retrofit concrete anchors to bring the addition into compliance with seismic requirements. Fortunately, the folks who make these connectors also provide a method of anchoring these connectors with special epoxy into existing concrete. The only “downside” is that I have to have a certified inspector sign off on the installation. Well, maybe not a downside as it really has to be right. Just additional expense.

Although I spent many months getting to this point, and went down a few “rabbit holes”, I can definitely say that the effort was worth it, especially as a DIY’er. The process of designing showed me how to build it with all of the right materials, methods, and references. It’s going to be really pro!

Here is a link to my detailed construction plans.

1370 BFD Detail Views